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Abstract We assess long-term climatological means, trends, and interannual variability around the
western end of Lake Superior during 1984–2013 by using available weather station data. Our results focus
on changes in basic and derived climate indicators from seasonal and annual temperature and precipitation,
to the traditionally defined frost-free season, to a novel definition of the climatological growing season. We
describe seasonal and year-to-year climate variability that influences forest phenology, using an alternative
growing season metric that is based on the warm-season plateau in accumulated chilling days as an indicator
of environmental triggers for vegetation growth and senescence. Our results indicate +0.56°C regional
warming during our 30 year study period, with cooler springs (�1.26°C) and significant autumn warming
(+1.54°C). The duration of the climatological growing season has increased +0.27 d/yr, extending primarily
into autumn. Summer precipitation in our study area has declined by an average �0.34 cm/yr, potentially
leading to moisture stress that impairs vegetation carbon uptake rates and can render the forest more
vulnerable to disturbance. Many changes in temperature, precipitation, and climatological growing season
are most prominent in locations where Lake Superior exerts a strong hydroclimatological influence,
especially the Minnesota shoreline and in forest areas downwind (southeast) of the lake. Observed trends in
lake temperature and ice phenology have also changed, coincident with a large-scale climatological regime
shift around 1998. A number of factors are likely altering forest phenology and the role of the forest in the
climate system of this ecologically important and highly varied forest-and-lake region.

1. Introduction
Changes in the climatology and related weather patterns of the Great Lakes region [Sousounis and Grover,
2002; Hayhoe et al., 2010; Huff and Thomas, 2014] are expected to affect both vegetation phenology [Jolly
et al., 2005; Schwartz et al., 2006; Groffman et al., 2012; Gunderson et al., 2012; Jeong et al., 2013; Richardson
et al., 2013] and forest disturbance regimes [Hufkens et al., 2012; Filewood and Thomas, 2014]. Forests exhibit
both direct and long-term indirect feedback responses to changes in climate [Heide, 1993; Pope et al., 2013;
Marchin et al., 2015], complicating our ability to predict forest phenology, estimate carbon sequestration, and
represent clearly the numerous land-atmosphere interactions within the climate system [Peñuelas et al., 2009;
Richardson et al., 2013]. Proximity to large water bodies such as Lake Superior can affect local and regional
temperature and precipitation patterns [Changnon and Jones, 1972; Scott and Huff, 1996; Hinkel and Nelson,
2012]. The interactions of land-lake processes with climate change will be complex; spatiotemporal warming
patterns and consequential changes in forest phenologymay vary considerably across the Great Lakes region
[Reyer et al., 2013]. In this paper we assess long-term climatological means, trends, and interannual variability
in large forested areas around the western end of Lake Superior. We focus on describing changes in basic and
derived climate indicators, from seasonal and annual temperature and precipitation to a novel definition of
the climatological growing season.

Vegetation and forest phenology refer here to the seasonal timing of events in a tree’s annual physiological
cycle, including leaf budburst and growth, senescence, and (for deciduous species) abscission. Phenology
also includes flowering and seed production, the generation of annual growth rings in stemwood, winter
hardening and spring sap flush, and other less visible processes. From the tree’s perspective, the timing of
phenological events involves complex and dynamic trade-offs among numerous processes that are both dri-
ven and constrained by environmental conditions: photosynthesis balances carbon assimilation with moist-
ure loss and nutrient transport; carbon must be allocated among leaf and stem growth, wood production
[Delpierre et al., 2016], chemical defenses, and reproductive processes; and the tree must protect itself against
temperature-related stresses such as freezing during spring and autumn transitions [Kim et al., 2014] and
moisture-related stresses in hot and/or dry periods [Arend and Fromm, 2007; Anderegg et al., 2012]. The pace

GARCIA AND TOWNSEND CLIMATOLOGY IN LAKE SUPERIOR FORESTS 1

PUBLICATIONS
Journal of Geophysical Research: Atmospheres

RESEARCH ARTICLE
10.1002/2016JD025190

Key Points:
• Two measures of growing season
duration increased around western
Lake Superior during 1984–2013

• Changes in lake temperature and ice
cover regime strongly affect area T
and P patterns and trends

• Changed regional T and P patterns
and trends may be significant enough
to modify forest phenology

Supporting Information:
• Supporting Information S1

Correspondence to:
M. Garcia,
matt.e.garcia@gmail.com

Citation:
Garcia, M., and P. A. Townsend (2016),
Recent climatological trends and
potential influences on forest phenol-
ogy around western Lake Superior, USA,
J. Geophys. Res. Atmos., 121, doi:10.1002/
2016JD025190.

Received 5 APR 2016
Accepted 5 NOV 2016
Accepted article online 9 NOV 2016

©2016. American Geophysical Union.
All Rights Reserved.

http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8996
http://dx.doi.org/10.1002/2016JD025190
http://dx.doi.org/10.1002/2016JD025190
http://dx.doi.org/10.1002/2016JD025190
http://dx.doi.org/10.1002/2016JD025190
http://dx.doi.org/10.1002/2016JD025190
mailto:matt.e.garcia@gmail.com


of photosynthesis is acutely sensitive to environmental conditions, especially temperature [Ali et al., 2015],
and varies over time with the phenological phases of the leaf and tree. A tree must constantly adjust its allo-
cation of resources (carbon, nutrients, moisture, and sunlight) according to changing biological strategies,
subject to biological and abiotic limitations, in a competitive environment.

Forest phenology in our midlatitude temperate study area is driven largely by the annual temperature cycle,
and phenological events can typically be ordered in “thermal time” by the accounting of cold season chilling
days (CD) and warm season growing degree-days (GDD) [Baskerville and Emin, 1969; Cannell and Smith, 1983;
Heide, 1993; Trudgill et al., 2005]. Meteorological and climatological factors thus significantly influence vege-
tation seasonal phenology at the land surface [Jolly et al., 2005; Ceccherini et al., 2014; Hwang et al., 2014;
Koster et al., 2014; Xie et al., 2015] and explain a large fraction of observed year-to-year variability in temperate
forest phenology [Fisher et al., 2007; Marchin et al., 2015], specifically as drivers of the annual growing season
start, intensity, and duration.

Climate change in the Great Lakes region is expected to proceed at different rates for different seasons, with
greater average warming expected in winter than in summer [Hayhoe et al., 2007, 2010]. Precipitation
regimes are expected to change, with a greater frequency of heavy precipitation events [Groisman et al.,
2012] and a diminishing proportion of winter precipitation falling as snow [Feng and Hu, 2007; Mishra and
Cherkauer, 2011]. Warming winters may interfere with dormancy periods for species with leaf bud differentia-
tion and development requirements [Rohde and Bhalerao, 2007; Morin et al., 2009; Viherä-Aarnio et al., 2014;
Williams et al., 2014], which can then affect the timing of spring budburst [Cannell and Smith, 1983; Murray
et al., 1989]. Young trees and undergrowth can be affected by changes in winter precipitation regimes and
seasonal snow cover, especially where snowpack often insulates seedlings and soil from hard freezing
[Drescher and Thomas, 2013].

A regional trend toward earlier spring green-up [Schwartz et al., 2006;Morin et al., 2009; Jeong et al., 2011] can
have substantial consequences for the ecosystem: overall seasonal carbon uptake and sequestration may
increase [Saxe et al., 2001; Millard et al., 2007], but new growth is also exposed to an increased likelihood
of spring frost events [Hänninen, 1991]. Some species may readily adapt to changing early-season freezing
regimes [Saxe et al., 2001] depending on the magnitude of interannual variability driving such changes.
Winter warming along with greater variability in spring meteorological conditions may lead to more “false
spring” and frost events that can damage leaves and severely hinder phenological processes through the
remainder of the growing season [Rigby and Porporato, 2008; Augspurger, 2013; Peterson and
Abatzoglou, 2014].

Uncertainty regarding climate change impacts on forests is even greater for autumn transitions, generally
because the senescence process and its triggers remain poorly understood [Estiarte and Peñuelas, 2015;
Gallinat et al., 2015]. Autumn senescence and deciduous leaf abscission occur with photosynthetic downre-
gulation [Hörtensteiner, 2006; Guo, 2013] and nutrient conservation as defenses against freezing injury
[Killingbeck, 1996; Niinemets and Tamm, 2005]. A regional trend toward later leaf senescence [Jeong et al.,
2011] can lead to overall longer growing seasons [Jeong et al., 2011; Gunderson et al., 2012] and possibly to
increased total primary productivity [Nemani et al., 2003; Twine and Kucharik, 2009]. However, individuals
and species for which phenological triggers adjust more slowly to environmental changes may remain sus-
ceptible to both frost and drought stress later in the growing season [Saxe et al., 2001; Parida and
Buermann, 2014]. Under drought conditions, a nutrient conservation process similar to winter preparation
may drive leaf dormancy and senescence [Munné-Bosch and Alegre, 2004; Marchin et al., 2010], and chronic
moisture stress can compromise the long-term capacity for carbon assimilation in these forests [Noormets
et al., 2008; Brzostek et al., 2014; Anderegg et al., 2012, 2013, 2015].

Understanding climate change impacts on forest phenology requires both the comprehensive characteriza-
tion of recent climatological variability, so that we can more accurately assess important trends, and an
improved understanding of forest responses to that variability, which can differ across species and land-
scapes. In this paper we analyze spatiotemporal climate variability and trends during 1984–2013 in forests
of the Upper Great Lakes, focusing primarily on proximity to Lake Superior and long-term climatological
changes to the cold and warm seasons that may have had profound, observable effects on forest phenology
in the region. We employ several threshold-based metrics in common use to characterize seasonal climatol-
ogy: chilling days (CD) and freezing days (FD) from autumn through spring, and growing degree-days (GDD)
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from spring through autumn. We introduce an alternative definition of the climatological growing season
based on the accumulation of CD through the year, similar but not equivalent to the more traditional
frost-free growing season. Using these and several derivative metrics, we assess recent changes in regional
climatology for the 1984–2013 period and examine spatiotemporal variability in growing season influences,
identifying specific areas where changes and trends have differed markedly from others during our study
period. This study presents an examination of the climatological growing season; our ongoing work seeks
to associate that influence with the observed forest vegetation growing season across our study area.
Follow-on work will apply our findings in this paper to an observational study of forest phenology over the
same area and period using remote sensing methods.

2. Study Area and Background

Our study area covers ~202,000 km2 of subboreal evergreen and midlatitude mixed forest around the wes-
tern end of Lake Superior in the North American Upper Great Lakes (Figure 1). This region hosts diverse forest
and wildlife species, numerous protected and managed areas including state and national forests, wide-
spread forest-related industry, and extensive tourism and recreational opportunities. A “tension zone”
[Curtis and McIntosh, 1951] that traverses our study area is defined by a combination of geographic transi-
tions, from warm and dry continental interior to cool and wet lake-influenced landscapes. This tension zone
marks the approximate southern extent of the Laurentian glaciation with resulting gradients in soil types
[Schaetzl et al., 2005; Danz et al., 2013] and encompasses a gradient in natural vegetation types [Wheeler
et al., 1992; Bockheim and Schliemann, 2014], from prairie and hardwood forests in the southwest (nowmixed
with agriculture) to subboreal evergreen and temperate mixed forests closer to Lake Superior. This transition
is clearly visible in land cover maps of the region based on the U.S. Geological Survey National Land Cover
Database products [Jin et al., 2013; Homer et al., 2015] (Figure S1 in the supporting information) and can
be identified by using the U.S. Environmental Protection Agency [2011] ecoregion maps of our study area
[Omernik et al., 2000; Omernik, 2004] (Figure S2).

Our choice of study area reflects a particular challenge that arises from the complex geography of the region.
Situated at the prairie-forest ecotone, the region borders the North American boreal forest but also has strong

Figure 1. Study area examined in this work (dashed box) in regional context with collected GHCND surface weather sta-
tions, each indicated with its measurement type(s) and observation record duration.
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agricultural influences, is subject to land-lake interactions and climatological influences of the Great Lakes.
Forests in this region display a wide variety in observed phenology and disturbance events, with further vari-
ety expected as a consequence of climate change impacts on all of these elements. The forests of the Upper
Great Lakes are increasingly vulnerable to disturbance factors and tree mortality due to seasonal moisture
stress and fire risk under changing climatic conditions [Irland et al., 2001]. This region is also sensitive to chan-
ging forest ecology and management practices, increasing recreational use and logging pressure, anthropo-
genic warming and climate change, and evolving conditions in the Great Lakes themselves including rapid
recent warming of Lake Superior. While all of these factors may affect the forest and its role in the carbon
cycle, in this paper we concentrate on the dominant climatological factors that may affect regional forest
phenology and its interannual variability.

Upper Great Lakes climatology is influenced by the polar jet stream that frequently traverses the region and
generally marks a continental-scale boundary between cold/dry polar air and warm/humid subtropical air
along the primary midlatitude storm track. The jet stream over the region is directed by interactions between
global circulations, synoptic dynamics, and climatological teleconnections [Rohli et al., 1999; Grise et al., 2013].
Both the upper level jet stream and surface land-lake interactions drive surface temperature gradients, frontal
positions, and storm meteorology [Payer et al., 2011]. Seasonality is a key factor in meteorological patterns at
temperate latitudes, with synoptic variability dominating the spring and autumn transition seasons [Grover
and Sousounis, 2002; Small and Islam, 2009; Small et al., 2010] and the Great Lakes providing a strong regional
influence on temperature and precipitation patterns throughout the year.

Given the position of the Great Lakes near the middle of the North American continent, jet stream and storm
track patterns across the region are driven by numerous teleconnections including the Pacific-North America
(PNA) pattern [Rodionov and Assel, 2001], the Arctic and North Atlantic Oscillations (AO and NAO, respec-
tively) [Nie et al., 2008; Luo and Cha, 2012], and often the combination of these with the Pacific Ocean El
Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) [Bond and Harrison, 2000; Grise
et al., 2013]. Climatological teleconnections have been correlated most strongly with Great Lakes regional
winter conditions [Rodionov and Assel, 2000, 2003; Wise et al., 2015] and seasonal lake ice cover [Assel and
Rodionov, 1998; Assel et al., 2003; Bai et al., 2011, 2012; Benson et al., 2012; Bai and Wang, 2012; Wang et al.,
2012]. The warm phase of the long-period Atlantic Multidecadal Oscillation (AMO) has been associated with
cold winters in eastern North America [Peings and Magnusdottir, 2014]. With a 4 to 7 year cycle, the ENSO
cycle is often associated with warm/dry winters in the Upper Midwest U.S. during El Niño (warm) years and
cool/wet winters during La Niña (cold) episodes [Trenberth et al., 1998; McPhaden et al., 2006].

Several studies have associated a climatological regime shift in the Upper Great Lakes region around 1998
associated with influential long- and short-period oscillating teleconnections: the AMO entered a primarily
warm phase around 1995, and the PDO entered a persistently cold phase in 1998 coincident with an anom-
alously strong El Niño episode during the 1997–1998 winter [Bond et al., 2003; Peterson and Schwing, 2003; Jo
et al., 2014]. Changes in Lake Superior ice cover, evaporation, water level, and water temperature regimes and
trends have been identified around the same time [Van Cleave et al., 2014; Watras et al., 2014]. Great Lakes
surface water temperatures have warmed faster than surrounding land surface temperatures [Austin and
Colman, 2007, 2008; Van Cleave et al., 2014] and Lake Superior ranks among the fastest-warming freshwater
lakes in the world [O’Reilly et al., 2015]. This warming has driven changes in the lake ice regime: peak areal
coverage has decreased [Howk, 2009; Wang et al., 2012], and observations indicate later ice onset in winter
and breakup in spring [Assel, 2003; Howk, 2009; Assel et al., 2013]. Reduced lake ice cover allows an overall
increase in lake surface evaporation through the early winter [Brown and Duguay, 2010], resulting in greater
winter lake-effect precipitation in downwind areas [Scott and Huff, 1996; Wright et al., 2013].

3. Data and Methods

We developed climatological maps and statistics by using daily minimum and maximum temperature (Tmin

and Tmax) and precipitation (P) observations from the merged Global Historical Climate Network–Daily
(GHCND) data set [Durre et al., 2010; Menne et al., 2012] for 410 weather stations in the vicinity of western
Lake Superior over the period from 1 January 1983 through 31 December 2013 (Figure 1). A number of these
stations, including 83 stations in Canada and others outside of our analyzed portion of the U.S., are used here
only for complete coverage of our study area. Our GHCND data set and the Python code used for our analyses
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are available online at https://megarcia.github.io/WxCD. We relied on GHCND quality assurance flags and
applied all valid station data for each date to generate gridded daily Tmin, Tmax, and P fields at 480m spatial
resolution by using radial basis functions [Akkala et al., 2010]. This method in Python/SciPy is an exact multi-
quadric interpolator [Hardy, 1971, 1990; Franke et al., 1994] with results that compare favorably with other
spatial interpolators [Garcia et al., 2008].

There is no explicit temporal interpolation of station values to cover periods of missing data at individual sta-
tions. As shown in Figure 1, some weather stations cover almost the entire analysis period, while many were
active for only portions of that period. We sought to generate the best possible maps on a daily basis by using
all available and valid station information for each day. All subsequent operations, including aggregation to
seasonal averages or totals and statistical analyses for trends, are performed by using this series of gridded
daily observations. We evaluated spatial interpolation error characteristics by a jackknife procedure (Figure
S3) and found that our results are comparable to the Wisconsin-oriented climatological study by Serbin
and Kucharik [2009]. Our spatial interpolation methods produced a daily Tmin bias (mean error) of +0.022°C
and mean absolute errors (MAE) of 1.78°C, daily Tmax bias of +0.038°C and MAE of 1.60°C, and daily P bias
of +0.001 cm and MAE of 0.152 cm. These bias values are less than the reporting precision of the meteorolo-
gical stations in the GHCND data set (0.1°C and 0.025 cm for T and P, respectively), and our MAE values fall
generally within expected interpolation accuracy [Garcia et al., 2008].

We calculated the daily average temperature [Cannell and Smith, 1983] from the gridded fields as

Tavg ¼ Tmin þ Tmax

2
(1)

We then accumulated chilling days (CD), chilling degree-days (CDD), and growing degree-days (GDD) [de
Reaumur, 1735; Baskerville and Emin, 1969; Thompson and Moncrieff, 1982; Lechowicz, 1984] on a daily basis as

CD ¼ ∑
current date

i¼0 at 1 Jul
di with di ¼

1 if Tavg; i < Tbase

0 otherwise

�
(2)

CDD ¼ ∑
current date

i¼0 at 1 Jul
ddi with ddi ¼ max 0; Tbase � Tavg;i

� �� �
(3)

GDD ¼ ∑
current date

i¼0 at 1 Jan
ddi with ddi ¼ max 0; Tavg;i � Tbase

� �� �
(4)

We used Tbase = 5°C following numerous empirical studies of tree physiology and spring phenology [Cannell
and Smith, 1983; Murray et al., 1989; Hunter and Lechowicz, 1992; Fisher et al., 2007; Schenker et al., 2014;
Viherä-Aarnio et al., 2014; Körner, 2015]. Accepted values of Tbase vary strongly with species and setting,
and those used for analysis of forest areas can differ greatly from values used in agricultural application [e.
g., Skaggs and Irmak, 2012]. In general, there is an inverse relationship between the value of Tbase and the
accumulation of GDD required to attain certain phenological phases such as budburst or flowering
[Trudgill et al., 2005]. We also recognize that Tbase and the biophysical efficiency of GDD and photoperiod
use in early phenophases can vary widely among species and even within species across climatological set-
tings. In the observational phase of our work, we may be able to evaluate such variety by using remote sen-
sing indicators of phenological phases. For simplicity in this climatological analysis, and based on an example
discussed by Trudgill et al. [2005], we have selected a single value of Tbase in common use for temperate tree
species to be applied across our study area. On this common basis, we can use calculated GDD accumulations
with vegetation greenness observations that will be incorporated in follow-on work to differentiate among
fast- and slow-developing, or more and less cold-adapted, phenological types.

We also calculated the accumulation of freezing days (FD, using Tbase = 0°C) through the cold season using
both Tavg and Tmin similar to equation (2). Cold season variables (CD, CDD, and FD) are accumulated from
1 July through the following spring, and warm season variables (GDD) are accumulated from 1 January
through the calendar year. We calculated seasonal temperature statistics as the 90 day mean and variance
of Tmin, Tmax, and Tavg, total P over 90 day and longer periods up to a full year, and the accumulated days
within a 90 day period with any (P> 0), moderate (1 cm< P ≤ 2.5 cm), and heavy (P> 2.5 cm) precipitation.
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In total, we examined 66 climatological indicators (excluding teleconnection indices; see Appendix A) includ-
ing several that have been used previously to assess changing climate extremes [Frich et al., 2002; Alexander
et al., 2006].

We defined the vegetation growing season in two ways. The first is a traditional definition based on the time
between last spring frost and first autumn frost dates (Tmin< 0°C) [Kunkel et al., 2004; Skaggs and Irmak, 2012;
Yu et al., 2014; McCabe et al., 2015]. Frost dates and the duration of the frost-free season are useful for asses-
sing long-term seasonal changes as well as acute indicators of possible vegetation freeze damage, especially
in the transition from cold to warm seasons [Augspurger, 2013]. To evaluate this danger we examined GDD
accumulation at the date of the last spring frost. With more accumulated GDD near the beginning of the
growing season, there is a greater chance that the opening of flowers and leaves on many species makes
them vulnerable to a freezing event that can adversely affect tree productivity through the remainder of
the growing season. In some cases, severe late frost events have followed a false spring period brought on
by shifts in synoptic influences over several weeks, from cold to warm and then to cold again. Two such
events within our study area and period, in 2007 and 2010, will be discussed below.

Alternatively, we also defined the growing season as a function of chilling day (CD) accumulation. We
observed that CD accumulation reaches a warm-season plateau soon after GDD accumulation begins in
the spring. The CD accumulation then departs from that plateau in the autumn just before GDD accumulation
ceases. Between these dates, Tavg ≥ Tbase and vegetation defenses against freezing are limited while net pri-
mary productivity is generally dedicated to growth and reproduction [Schenker et al., 2014; Vitasse et al., 2014;
Körner, 2015; Pagter et al., 2015]. Our resulting plateau-based growing season is several days longer than the
frost-free season for the same year. The differences between these season starting and ending dates are of
great interest to us: in these periods, many forest species are vulnerable to environmental conditions that
could affect vegetation carbon uptake over the entire growing season, as in the case of a late spring frost,
or bring the growing season to an early close with an autumn frost event that triggers leaf senescence and
the tree’s winter preparations.

Using our alternative definition of the growing season, we evaluated two aggregate seasonal measures. We
defined the “cold season intensity” as

CSI ¼ CDDplateau=CDplateau (5)

Cold season duration is represented well by CD, but that measure does not indicate the severity of the sea-
son: the winter could be particularly cold or relatively mild, but CD will continue to accumulate as long as
Tavg< Tbase. Conversely, accumulated CDD alone has little phenological meaning unless it is related to a
calendar duration of some importance. Together, CD and CSI provide a composite indication of both the
duration and severity of the cold season. Two winters with similar CD accumulations may be differentiated
by their CSI values, providing a distinction between cold andmild seasons. Although trees may not recognize
a difference between one subfreezing temperature and another, with regional warming we expect both CD
and CSI (as calculated by our definitions) to diminish over time. Warmer winters can interfere with endodor-
mancy (“winter chill”) requirements for many forest species [Morin et al., 2009], leading to altered phenologi-
cal cycles and reduced primary productivity in subsequent growing seasons.

Our aggregate measure for the warm season is the “growing season intensity” that we defined as

GSI ¼ GDDplateau end � GDDplateau begin

DOYplateau end � DOYplateau begin

(6)

with DOY as the day of year and referring to the CD plateau as discussed above. In this case, both GDD and
growing season duration remain relevant: phenological stages (e.g., budburst, leaf size thresholds, and
maturity) are frequently associated with GDD accumulation [Cannell and Smith, 1983; Trudgill et al., 2005],
and there is evidence that senescence timing depends on both inherent and external limits to leaf longevity,
such as photoperiod [Kikuzawa et al., 2013]. Our GSI metric is separately useful as an indicator of temperature-
related influences throughout the growing season, such as transpiration moisture demand and, if precipita-
tion is inadequate through the season, the likelihood of vegetation moisture stress [Koster et al., 2014].
Tracking GSI through the growing season, especially using its rate of change on a short-term basis, enables
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subseasonal monitoring of vegeta-
tion status that can lead to reduced
capacity for carbon uptake and
growth [Teskey et al., 1987], leaf
wilting [Munné-Bosch and Alegre,
2004; Marchin et al., 2010], and lit-
ter drying with evolving conditions
conducive to forest fires [Yebra
et al., 2013] and other disturbance
agents.

To examine the possible effects of
Lake Superior seasonal ice phenol-
ogy on nearby land areas, we
included observations of ice onset
and breakup at Bayfield,
Wisconsin, from two sources. We
obtained records for 1984–2012
from the NOAA National Snow
and Ice Data Center (NSIDC)

[Howk, 2009] and supplemented those with operation records from the nearby Madeline Island Ferry Line
(MIFL) for 2011–2014 (Mary Ross, personal communication, 2015). Both of these sources indicate in their over-
lapping period that the area of Lake Superior near Bayfield did not completely freeze during the 2011–2012
winter season, and ice-on/ice-off dates otherwise differ between these sources by only 1–2 days; thus, we
considered MIFL observations a reasonable proxy for NSIDC records that were not yet available for this work.

Finally, we evaluated the possible influences of global teleconnections on our regional climatology by using
monthly indices reported by the NOAA National Centers for Environmental Prediction Climate Prediction
Center and the NOAA Earth Systems Research Laboratory Physical Sciences Division. From these records
we calculated 3month averages for each season (December-January-February, March-April-May, June-July-
August, and September-October-November) for each climate oscillation and pattern described in section 2
except ENSO. The ENSO signal is traditionally summarized over an extended winter (December-January-
February-March) period, for which we calculated the average index value in each of the reported equatorial
Pacific Ocean regions in order to identify any differences in their influence: Niño-3 (eastern), Niño-4 (central),
and Niño-3.4 (overlapping parts of Niño-3 and Niño-4).

There are a number of caveats to be noted regarding the time series analyses that we perform here. Although
the 30 year period that we have examined generally meets the customary duration criterion for climatologi-
cal analyses, it is a relatively short period for trend analysis. Within our study period, we have assumed and
analyzed trends by linear regression instead of higher-order functions that may fit the examined time series
better. We ignore possible breaks and shifts in reporting long-term trends for our 30 year analysis. Although
we do examine any changes in (linear) trends across the 1997–1998 winter season that can be extracted from
these time series, there is a necessary trade-off where each of those trends covers a much shorter period and
is less likely to represent a long-term climatological trend. We recognize that trends important to the physical
system may not demonstrate statistical significance and that not all statistically significant trends indicate
physical processes that can be justified in a conceptual model of the land-lake-atmosphere system examined
here. We are particularly sensitive to the likelihood that derived climate indicators, such as plateau-based
growing season duration, incorporate more basic variables that may demonstrate their own significant
trends, even though a trend in the derived indicator may not itself end up being significant. Such cases
can sometimes be attributed to opposing trends in the constituent indicators.

4. Results

Area-averaged 1984–2013 mean daily temperature observations (Tmin, Tmax, and Tavg) through the year are
shown in Figure 2, which also provides a conceptual overview of key temperature-related climate variables
that we analyze: CD, FD, and GDD accumulations; mean last spring and first autumn frost dates; and mean

Figure 2. The 1984–2013 mean daily temperatures averaged over the U.S.
portion of our study area, with observed seasonal indicators marked.
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CD plateau beginning and ending
dates. The area-averaged mean
annual accumulations of CD and
GDD are shown in Figure 3 and are
also marked with key dates related
to the CD plateau. Area-averaged
seasonal and annual precipitation
(P) totals for 1984–2013 are shown in
Figure 4. Though we refer here to
seasonal T and P means and trends
over our study period, maps of indi-
vidual seasonal indicators are
included in the supporting informa-
tion that accompanies this paper.
The area-averaged climatological
mean, variance, trend, and extreme
values for a number of both seasonal
and annual climatological indicators
are summarized in Table 1. Maps of
study-period mean and trend values
over 1984–2013 for several key cli-
matological indicators are shown in
Figures 5–10 with areas of trend sig-
nificance at p< 0.05 marked.

4.1. Temperature and
Precipitation Indicators and Lake
Superior Influences

Seasonal and annual summaries of
area-averaged T and P indicators
are listed in the upper half of
Table 1. Maps of annual average T
values and interannual trends are
shown in Figure 5. Cooler tempera-
tures in spring and summer are con-

centrated on theMinnesota (northern) shore of Lake Superior, and the coldest temperatures in all seasons are
found in the land areas northwest of the lake (Figures 5a, 5c, and 5e). Warmer temperatures in autumn and
winter are generally concentrated on the Wisconsin/Michigan (southern) shore of Lake Superior, although
some warm locations along the Minnesota shore are also apparent. The warmest temperatures in all seasons
are found in the southwestern portion of our study area in primarily agricultural regions (Figure S1). The
resulting spatial gradient in Tavg is strongest in a general north-south orientation across the far western
end of Lake Superior and more generally across the tension zone that traverses our study area. Long-term
positive trends in Tmin (Figure 5b) are generally more widespread and stronger than those in Tmax

(Figure 5d), which actually demonstrates some areas of long-term cooling both northwest and southeast
of Lake Superior over the study period.

From the area-average trends listed in Table 1 we calculated a 30 year net warming of +0.56°C in annual
mean Tavg for our study area. Long-term cooling in spring (net�1.26°C/30 years) has been offset by warming
in all other seasons, especially autumn (net +1.54°C/30 years), with the remainder of overall 30 year net warm-
ing divided almost evenly between the winter and summer seasons. Though none of these overall tempera-
ture trends demonstrate statistical significance at the p< 0.05 level using area-averaged values, significant
trends can be found in more localized portions of our study area. In particular, long-term warming is evident
in Tmin (Figure 5b) and Tavg (Figure 5f) on the Minnesota shore of Lake Superior and following the approxi-
mate location of the tension zone across our study area.

Figure 3. The 1984–2013 mean CD and GDD accumulations averaged over
the U.S. portion of our study area, with seasons marked.
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Maps of annual average P values and interannual trends are shown in Figure 6. Mean seasonal precipitation
(Figure S7) is lowest in winter and highest in summer, with generally ambiguous area-wide spatial gradients
in those seasons, while spatial gradients in mean seasonal P across our study area are generally north-to-
south in spring and west-to-east in autumn, with comparable total P in those seasons. These patterns result

Figure 4. The 1984–2013 seasonal and annual precipitation averaged over the U.S. portion of our study area.

Table 1. 1984–2013 Climatological Indicator Statistics Averaged Over the U.S. Portion of Our Study Areaa

Climatological Variable Mean SD
Trend

(units/yr)
Minimum
(Year)

Maximum
(Year)

Temperature Indicators
Winter average temperature (°C) �9.6 2.3 +0.04 �13.7 (1994) �4.8 (2012%)
Spring average temperature (°C) 9.2 1.4 �0.04 6.7 (1996%) 11.6 (1987#)
Summer average temperature (°C) 17.7 0.9 +0.03 15.1 (1992#) 19.4 (2002)
Autumn average temperature (°C) 0.7 1.6 +0.05 �2.8 (1985%) 3.9 (2001%)
Annual average temperature (°C) 4.5 1.0 +0.02 2.8 (1996%) 6.8 (1998#)

Precipitation Indicators
Winter total precipitation (cm) 9.2 1.9 +0.03 4.3 (1987#) 12.8 (1997)
Spring total precipitation (cm) 23.4 5.1 +0.13 14.1 (1988#) 36.4 (2001%)
Summer total precipitation (cm) 28.9 5.6 �0.34** 18.4 (2012%) 39.6 (1999%)
Autumn total precipitation (cm) 17.0 4.9 �0.02 9.7 (1989%) 26.6 (1996%)
Annual total precipitation (cm) 80.0 8.7 �0.19 63.9 (2006%) 96.5 (1985)

Lake Superior Indicators
Lake Superior ice-on date (DOY) 15.9 18.7 +1.15** �13 (1986/1990) 69 (2002)
Lake Superior ice-off date (DOY) 88.3 12.2 +0.69 63 (2000%) 115 (1996%)
Lake Superior ice duration (days) 72.4 26.9 �0.46 0 (1998#/2012%) 109 (1996%)

Cold Season Indicators
Freezing days (using Tmin) 183.5 10.3 �0.28 167.0 (2010#) 200.6 (1996%)
Chilling days (using Tavg) 176.9 10.5 �0.14 158.6 (2012%) 196.3 (1996%)
CSI (degrees) 11.0 1.3 �0.03 8.7 (2012%) 13.3 (1996%)
Last spring freezing night (DOY) 137.8 5.7 �0.12 127.2 (2001%) 148.8 (1992#)
First autumn freezing night (DOY) 269.8 5.1 +0.20 261.5 (1986) 279.1 (2013)

Warm Season Indicators
Last spring freezing night (GDD) 155.6 47.0 �2.12* 79.7 (1996%) 244.4 (1992#)
Frost-free season (days) 132.0 6.8 +0.32* 116.9 (1992#) 144.5 (2005)
Beginning of CD plateau (DOY) 127.4 6.8 +0.16 112.7 (1985%) 139.7 (1992#)
End of CD plateau (DOY) 275.1 6.1 +0.27* 262.9 (1991) 286.6 (2013)
Plateau duration (days) 147.7 7.3 +0.11 134.4 (1991) 165.5 (1998#)
Plateau GDD (degree-days) 1659.6 134.5 +1.88 1316.4 (1992#) 1896.8 (1988#)
GSI (degrees) 11.2 0.8 +0.00 9.5 (1992#) 13.0 (1991)

aTrend significance is marked as * at p< 0.05 and ** at p< 0.01. Extreme years affected by El Niño (ENSO+) and La
Niña (ENSO�) events are marked with # and %, respectively.
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in a southeastward gradient in mean annual P that is most prominent across Lake Superior (Figure 6a). We
note here the lake-effect influence on spatial distributions of P in winter, with the areas of heaviest winter pre-
cipitation on the southern shore and immediately downwind (southeast) of Lake Superior. Winter precipita-
tion is increasing in some areas, especially in the immediate vicinity of Lake Superior, but summer
precipitation exhibits an area-average trend of �0.34 cm/yr (p< 0.01), with areas of stronger trends along
almost the entire lakeshore and extending in a number of directions from Lake Superior, especially along

Figure 5. The 1984–2013mean annual Tmin, Tmax, and Tavg, with trends. Areas of trend significance at p< 0.05 are stippled.
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the tension zone in Wisconsin. Area-average reductions in summer precipitation are consistent with an over-
all trend in summer precipitation days (P> 0) of �0.25 d/yr (p< 0.001). The resulting trends in total annual
precipitation (Figure 6b) are relatively neutral across much of our study area, with isolated locations of signif-
icant negative trends in areas where the summer trends dominate, especially south and southeast of Lake
Superior.

A number of our results are consistent with the thermal influence of Lake Superior on regional climatological
indicators. We found higher winter and lower summer temperatures along the northern lakeshore than in the
forest region farther to the northwest, with a longer frost-free season along the lakeshore bymore than 4 days.
Growing season transitions, as indicated by the beginning and end of the CD plateau, are also delayed
2–3 days along the lakeshore in comparison with the forest areas to the northwest. The accumulation of

Figure 6. The 1984–2013 mean annual P, with trends. Areas of trend significance at p < 0.05 are stippled.

Figure 7. The 1984–2013mean-derived cold season indicators, with trends. Areas of trend significance at p< 0.05 are stippled.
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area-wide winter precipitation days is positively correlated with the date of Lake Superior ice-on conditions
(p< 0.05) and negatively correlated with ice cover duration (p< 0.05). The number of spring moderate preci-
pitation days (1 cm< P ≤ 2.5 cm) in areas downwind (south and southeast) of Lake Superior is negatively cor-
relatedwith ice duration (p< 0.05), a result consistent with ice cover inhibiting lake evaporation and thus lake-
effect precipitation in those areas.

Figure 8. The 1984–2013 mean frost-based growing season start, end, and duration, with trends. Areas of trend signifi-
cance at p < 0.05 are stippled.
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Our results suggest that the seasonal ice cover on western Lake Superior plays an important role in tempera-
ture and precipitation patterns on adjacent land areas. Our analyses indicated a trend in the date of Lake
Superior ice-on conditions of +1.15 d/yr (p< 0.01), although we recognize that a linear trend cannot ade-
quately account for the large interannual variability in lake ice phenology. Notably, during autumn and winter
the area of greatest precipitation in our study area is concentrated southeast of Lake Superior where prevailing
northwesterly winds carry lake-evaporated moisture onshore. Conversely, spring and summer P appears

Figure 9. The 1984–2013 mean plateau-based growing season start, end, and duration, with trends. Areas of trend signifi-
cance at p < 0.05 are stippled.
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relatively suppressed in the same area. Cold-season ice cover frommidwinter through early spring inhibits lake
evaporation and lake effect precipitation; during the summer the lake is generally cooler than the surrounding
land areas, inducing a stable atmospheric boundary layer and inhibiting the development of storms that could
thenmove onshore [Changnon and Jones, 1972]. Even the small trends in lake ice phenology that we found are
enough to allow statistically significant increases in winter precipitation (Figure S7) southeast of Lake Superior.
However, spring precipitation seems also to increase in those same areas, which we cannot attribute to the
slightly later lake ice breakup over time. In that case, our analyses may require a finer temporal division of sea-
sonal precipitation in areas downwind of the lake so that portions of the spring season before and after the
observed ice-off date in each year are treated separately. Such a division could help demonstrate the transition
from winter (cold) to spring (warm) weather patterns and phenological processes in the area of lake influence.

4.2. Cold and Warm Season Indicators and Interseasonal Variability

As expected, the greatest accumulation of CD in our study area occurs in the forest areas northwest of Lake
Superior (Figure 7a). The 30 year trend in CD accumulation (Figure 7b) is generally mixed across the study
area, with only small areas of statistically significant reduction in CD accumulation that are generally coinci-
dent with the locations of winter Tmin and annual Tavg warming. There is slightly greater spatial variability evi-
dent in the detail of 30 year mean CSI (Figure 7c) which is lowest in the immediate vicinity of Lake Superior
and in downwind regions. This result, and decreasing CSI over time in many areas on the lakeshore (Figure 7
d), is consistent with the warming surface temperatures and changing ice phenology of Lake Superior.

The duration of the frost-free season (Figure 8f), our traditional measure of the climatological growing season,
shows an area-average trend of +0.32 d/yr (p< 0.05) over our 30 year study period (Table 1) that is consistent

Figure 10. The 1984–2013mean plateau-based growing season indicators, with trends. Areas of trend significance at p< 0.05
are stippled.
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with previous studies [Easterling, 2002; Kunkel et al., 2004; Yu et al., 2014; McCabe et al., 2015]. There is much
spatial detail in maps of trends in the last spring and first autumn frost dates (Figures 8b and 8d, respectively),
with some areas experiencing statistically significant changes in both indicators consistent with lengthening
of the frost-free season. Most of these areas occur in the forested areas northwest of Lake Superior and along
the tension zone south and southeast of the lake.

We found quite different patterns for the CD plateau (Figure 9), our alternative measure of the climatological
growing season. The beginning of the CD plateau changed little over time in the area average but shows a
large area downwind of Lake Superior with significant trends toward a later start to the climatological grow-
ing season (Figure 9b). The end of the CD plateau showed an area-average trend of +0.27 d/yr (p< 0.05) over
our 30 year study period with large areas of significant trends (Figure 9d) that are consistent with significant
autumn warming. These include areas on the Minnesota (northern) shore of Lake Superior and across agricul-
tural areas in the southwest portion of our study area, but notably not in the region immediately southeast of
the lake. Trends in the duration of the CD plateau are strongly mixed across our study area (Figure 9f), with an
overall longer plateau evident in many areas where the end of the plateau now extends further into autumn,
but a shorter plateau in areas directly upwind and downwind of Lake Superior. Our maps of plateau GDD
accumulation, GSI, and their trends (Figure 10) are consistent with slightly warmer climatological growing
seasons over time, especially for isolated areas in immediate proximity to the lake.

We found throughout the year that seasonal mean average temperature is inversely correlated with the num-
ber of seasonal precipitation days (P> 0) but not with accumulated seasonal P, demonstrating that cloudy
seasons are cooler seasons overall. We also found several significant (p< 0.05) interseasonal correlations
among T and P indicators (Figure 11), especially between winter and spring conditions. Winter T and P indi-
cators are strongly tied to T and the number of precipitation days in the following spring. However, by these
methods we found no statistically significant interseasonal correlations that might be used to extend T and P
predictability beyond spring and through the remainder of the growing season.

4.3. Teleconnection Influences and a Climatological Regime Shift

Two large-scale teleconnections examined here, the AMO and PDO, demonstrated regime transitions around
the middle of our study period in the course of their long-period oscillations. NOAA observations indicated
that the AMO index increased during 1984–2013 and around 1995 shifted to a warm (AMO+) phase that is
generally associated with drier conditions in the Upper Midwest U.S. [Enfield et al., 2001]. The PDO index gen-
erally decreased through our 30 year study period, with observations of distinct PDO+ periods (indicating
warmer northeastern Pacific coastal waters) in the mid-1980s and mid-1990s followed by PDO anomalies

Figure 11. The 1984–2013 intraseasonal and interseasonal temperature and precipitation correlations. Only correlations at
p < 0.05 are shown, with * at p < 0.01 and ** at p < 0.001.
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(cool northeastern Pacific coastal waters) beginning around 1998. Our results indicate that the AMO (PDO)
index is positively (negatively) correlated with study area T, winter P, and the date of Lake Superior ice onset.
The AMO (PDO) index is negatively (positively) correlated with summer P and lake ice duration. Local correla-
tions with Pacific teleconnections (PDO, ENSO, and PNA) appear strongest in winter and spring, with Pacific
indices overall positively correlated with T and negatively correlated with P in the Upper Great Lakes region. A
long-term increase in autumn PNA index values (p< 0.05), and positive values of the PNA index, in general,
has been associated with relatively dry conditions over continental North America [Leathers et al., 1991]. The
often-related AO and NAO indices showed no significant correlation with study area surface climatology
except in autumn, when the AO index is negatively correlated with area-averaged P.

A distinct shift in climatological regimes across several global and regional indicators was thus observed
around 1998. Our analyses indicated changes to, and even reversals of, statistically significant (p< 0.05) tem-
poral trends for several climatological indicators between the 1984–1998 and 1998–2013 periods.
Specifically, pairedmaps of trends in spring and autumn Tavg and annual P are shown in Figure 12. Many loca-
tions with strong spring cooling during 1984–1998 (Figure 12a) shifted to near-neutral trends in the latter half
of our study period (Figure 12b), which can be attributed primarily to a shift in the trend of spring Tmax with
very little change in spring Tmin trends across much of our study area. Locations with weak autumn warming
during the earlier period (Figure 12c) shifted to strong cooling trends in the 1998–2013 period (Figure 12d),
which we attribute to sharp reversals in both autumn Tmax and autumn Tmin trends across our study area.
Despite this reversal to statistically significant cooling in many locations, our strongest 30 year area-averaged
seasonal warming still appears in autumn (Figure S6 and Table 1). Annual total P shifted from increasing
trends in isolated locations during the 1984–1998 period (Figure 12e) to widespread decreasing trends across
much of our study area in the 1998–2013 period (Figure 12f). We attribute this shift primarily to an area-
average negative trend in summer P (p< 0.01; Figure S7 and Table 1) that is also strongest in the latter half
of our study period and to a lesser extent diagnosed shifts to decreasing seasonal precipitation trends that
we also found for winter and spring.

5. Discussion

Using available weather station data, we have examined the mean seasonal and annual climatology, temporal
trends, teleconnection correlations, and the potential influences of Lake Superior on surrounding land areas
during 1984–2013. Our study area is characterized by an extensive and ecologically important forest-and-lake
landscape at the Upper Midwest U.S. prairie-forest ecotone, wherewe anticipate observable sensitivity to recent
and ongoing climate change. Our results indicate regional warming of +0.56°C through our 30 year study period
supported by mixed seasonal changes, with spring area-average cooling offset primarily by autumn warming.
Long-term trends include warmer winters, wetter winter and spring seasons, a diminishing duration of Lake
Superior ice cover, and a strong decrease in summer P since the 1998 PDO regime shift and El Niño event.

Using both traditional and new definitions of the growing season, we have identified an overall extension of
the climatological growing season into autumn. Our new definition, based on a warm season plateau in CD
accumulation, provides additional information for diagnosing early-season freezing risks and later periods of
potential vegetation moisture stress, both of which can have a strong influence on seasonal and interannual
variabilities in vegetation phenology. However, some risks such as late spring frost and false spring events
may remain location-specific and are not characterized well with area-averaged metrics.

Several prominent global and hemispherical climatic teleconnections correlate in varying degrees with seaso-
nal and interannual variabilities in regional hydroclimatology and with lake ice phenology, all of the factors
affecting seasonal T and P patterns in our study area. Changes in Lake Superior ice cover regimes have con-
tributed to greater winter and spring lake-effect P in portions of our study area south and southeast of the lake.
Lake Superior clearly affects T and P patterns in nearby land areas through both proximity and an interseasonal
lag due to thermal inertia, with effects that are likely strong enough to alter forest phenology in those areas.

5.1. Climatological and Growing Season Trends

The overall area-average temperature increase that we estimated by linear regression is consistent with prior
estimates of warming in this region over similar periods [Li et al., 2010; Groisman et al., 2012]. Our results show
a consistent continuation of trends reported for 1951–1980 climatic changes in the Great Lakes region
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reported by Scott and Huff [1996]: increased minimum temperatures in all seasons, decreased spring and
summermaximum temperatures, slight decreases in summer rainfall, and large winter precipitation increases
for lake-effect areas primarily southeast of Lake Superior and as winter ice cover diminished. Choi et al. [2014]
analyzed Serbin and Kucharik’s [2009] climatological data set for Wisconsin and showed statistically significant
decreases in the frequency of heavy precipitation events during 1950–2006, especially southeast of Lake
Superior in the same lake-effect areas where we also found slight decreases for heavy precipitation days
(P> 2.5 cm) in summer and autumn. However, our analyses indicated slight increases in winter and spring

Figure 12. The 1984–1998 and 1998–2013 trends in selected climatological indicators.
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heavy precipitation days in those areas. These differences with Choi et al. [2014] might be attributed to differ-
ing study periods but are likely related to technical differences (e.g., study area boundaries, station data selec-
tion, interpolation methods, and grid resolution) in the examined precipitation fields that can demonstrate
large spatial variability.

Our estimated +0.56°C area-average temperature change, along with the accelerated warming of Lake
Superior surface waters (+2.5°C) [Austin and Colman, 2007, 2008; Van Cleave et al., 2014], clearly indicates
regional warming over the 30 year study period. Though the beginning of the CD plateau in spring has chan-
ged little, we have noted the extension of the CD plateau later into autumn consistent with long-term tem-
perature increases concentrated primarily in that season. Overall, these results point to a longer
climatological growing season duemore to warm-season extension later into autumn than earlier into spring,
consistent with findings by Jeong et al. [2011]. Annual total precipitation demonstrated a slight negative area-
average trend over the study period and a particularly strong negative trend since 1998 (Figure 12) driven by
a sharp decrease in summer precipitation (Figure S7). Our analyses of temperature trends support the small
negative trends that we found for cold season CD and FD and a consequent increase in the duration of the
frost-free season. Along with observed influences of large-scale teleconnections (AMO+, PDO�, and increas-
ing PNA), these changes suggest an overall drying trend [Parida and Buermann, 2014] within our study period
for the region.

Area-wide climatological warming and drying during 1984–2013 means that forests in our study area may
have experienced increasing moisture stress in that period, especially in summer. It is important here to dis-
tinguish between changes affecting moisture availability, based primarily on P, and those that drive vegeta-
tion moisture demand, based primarily on T. Vegetation moisture stress occurs with the combination of
these, when moisture availability is insufficient to meet moisture demand. Conditions promoting moisture
stress can inhibit transpiration and reduce growth [Teskey et al., 1987], promote leaf wilt and early senescence
[Munné-Bosch and Alegre, 2004;Marchin et al., 2010], enhance tree mortality [Anderegg et al., 2012, 2013], and
reduce overall forest carbon uptake [Brzostek et al., 2014; Koster et al., 2014].

For tree species that adapt quickly to changing climate conditions and phenological cues, a longer climato-
logical growing season may drive changes in growing season net primary productivity [Nemani et al., 2003;
Twine and Kucharik, 2009]. A warmer spring is typically associated with an earlier start to the vegetation grow-
ing season, provided adjustment to the timing and speed of leaf growth (subject to freezing risks) to these
warmer conditions. Higher autumn temperatures may support longer vegetation growing seasons for those
forest species that can adjust their leaf longevity and senescence triggers to warmer autumn conditions.
However, we are still learning to identify and understand the many cues for leaf senescence that influence
leaf phenology, including photoperiod and temperature [Kikuzawa et al., 2013; Ali et al., 2015] and biochem-
ical limits on leaf longevity [Keenan and Richardson, 2015; Seki et al., 2015].

5.2. Seasonal Transitions

Climate during the shoulder seasons can be critical to vegetation phenology. A lack of statistically significant
interseasonal correlations between summer and the shoulder seasons (Figure 11) leads to uncertainty
regarding aspects of forest phenology such as the progression of green-up, seasonal peak greenness in early
summer, and deciduous autumn senescence with follow-on effects for the related winter feeding patterns of
overwintering herbivores. Summer and autumn conditions strongly influence seed production in many forest
species, with consequences for wildlife feeding and reproduction patterns [Yang et al., 2010]. These growing
season conditions affect biochemical processes that control leaf bud set and hardening prior to late autumn
freezing, with consequences for optimum productivity in the next growing season [Vitasse et al., 2014; Estiarte
and Peñuelas, 2015]. Seasonal climatological conditions can thus affect forest phenology and overall primary
productivity in the same season and well into the forest life cycle [Noormets et al., 2008; Anderegg et al., 2012,
2013, 2015; Brzostek et al., 2014].

Regarding late frost events and false spring occurrences, we found an area-average trend of �2.1 degree-
days/yr (p< 0.05) in the accumulation of GDD before the last spring frost. This trend, along with a slight trend
toward earlier last spring freezing nights (Table 1), suggests a slowly diminishing risk of vegetation-damaging
spring frost events over our study period. This result is not necessarily consistent with the frequency-based
examination of frost-based spring vegetation damage [Augspurger, 2013] that suggests an increasing
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frequency of occurrences in the Midwest US. We take particular note of false spring and late frost events that
were observed in the U.S. Upper Midwest in 2007 [Augspurger, 2009; Gu et al., 2008] and 2010 [Fereday et al.,
2012; Hufkens et al., 2012; Filewood and Thomas, 2014; Ning and Bradley, 2014]. For these years the area-
average accumulations of GDD before the last spring frost were 147 and 156 degree-days, respectively, both
very close to the 30 year average for that metric and with earlier-than-normal last spring frost dates in both
years. By contrast, a spring heatwave in 2012 [Ellwood et al., 2013; Peterson et al., 2013] led to an area-average
accumulation of 200 GDD by the time of the last spring frost, which also occurred earlier than the 30 year nor-
mal date, yet no particular frost-related damage was reported across the region. Hypothetically, we expect
higher-than-normal GDD accumulations (suggesting greater likelihood of early leaf growth) before a possibly
later-than-normal last spring frost date for these events. However, false springs in ENSO-neutral 2007 and El
Niño-influenced 2010, but not in La Niña-influenced 2012, ran contrary to that expectation. Under that
hypothesis, we further suspect that false spring events occurred for portions of our study area in 1986 and
1992, as indicated in Table 1. We anticipate that our continuing observational study of regional forest phenol-
ogy will provide us with greater insight into these occurrences, given the potential importance of spring late
frost events to seasonal phenological patterns and their impact on tree growth.

The seasonal and interseasonal climatological relationships that we have found may promote some interest-
ing phenological patterns. Within a season, the inverse relationship between average temperature and pre-
cipitation days (as a proxy for cloudy days) corresponds to days with greater water availability (from
precipitation) also having lower evaporation and transpiration moisture demand. A cycle may be established
in which forest soil and canopy moisture are allowed to build up during periods with cloudy/wet days and
then deplete during periods with clear/dry days. Lower leaf primary productivity in cloudy periods may then
be offset by enhanced productivity during clear periods when supported by greater soil moisture availability.
Increased soil moisture is also conducive to seed germination and seedling growth, especially for shade-
tolerant species, and can thus have potential impacts on mixed forest understory structure and species dis-
tributions [Nowacki and Abrams, 2008].

Conversely, dry soils and forest litter can lead to inhibited soil respiration, slower litter decay, and potential
interference with seed germination and seedling growth, also altering forest structure and composition over
time [Gustafson and Sturtevant, 2013; Peters et al., 2015]. Reduced moisture availability can eventually lead to
a shift of the surface energy balance away from latent heating (evaporation and transpiration) in the growing
season to greater sensible heating at the surface and in the forest canopy, a positive feedback cycle that can
enhance local warming and exacerbate forest canopy moisture stress [Anderegg et al., 2012]. A warmer spring
and earlier start to the growing season may therefore compensate for a cooler summer in some years in
terms of total growing season primary productivity, but the reverse is not necessarily true: a warm summer
may not compensate for a cool spring and a late start to the growing season, but instead exacerbate tem-
perature and moisture stresses that reduce forest productivity throughout the growing season. Numerous
influences generate complex interactions around the Upper Great Lakes, and the lakes themselves contribute
to spatiotemporal variability in the system through their internal mixing regimes, providing some “memory”
of conditions across seasons (via thermal inertia) and potentially over several years [Bennett, 1978; Gerten and
Adrian, 2001; Piccolroaz et al., 2015].

5.3. Teleconnection Influences

We are concerned not only with the mean climatology but also its year-to-year variability and extremes, as
these also influence forest phenology and growth [Bouriaud et al., 2005; Voelker et al., 2012]. We may general-
ize for the Upper Midwest U.S. that El Niño (ENSO+) events foster warm/dry years and La Niña (ENSO�)
events support cool/wet years: Table 1 lists extremes in many of our climatological indicators that can be
associated with ENSO events within our study period. El Niño conditions that persisted through 1987 and
1988 produced the driest winter and warmest growing season in our study period in conjunction with regio-
nal drought conditions [Trenberth et al., 1988; Weaver et al., 2009]. On the other hand, Lake Superior did not
fully freeze during both the El Niño winter of 1997–1998 [Changnon, 1999] and the La Niña winter of 2011–
2012 [Peterson et al., 2013; Dole et al., 2014], the latter event leading into one of the most spatially and tem-
porally variable growing seasons during our study period [Hoerling et al., 2014]. Teleconnection variability
may have influenced the wettest year of our study period in 1985 (ENSO�, AMO�, and PDO+) and the driest
year in 2006 (ENSO�, AMO+, and PDO–), both La Niña years. It remains to be seen whether our observed
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teleconnection influences are part of a persistent long-term trend or might change, such as with eventual
regime shifts in the long-period AMO and PDO.

Understanding interannual climatological variability, combined with interactions of the land-atmosphere sys-
tem, in our study area is clearly more complex than reliance on any single element such as teleconnections
[Wise et al., 2015] or another external indicator will allow. As another example, Weaver et al. [2009] analyzed
the 1993 Upper Midwest summer flood event, which was supported by both AO� and NAO� conditions, and
found that moisture from the distant Gulf of Mexico contributed significantly to large rainfall totals in the
Great Lakes and Upper Mississippi River regions that year. An event or season can reach climatological
extremes by the interaction and reinforcement of influences: the NAO phase, which can drive synoptic orga-
nization over the Great Lakes but may not necessarily generate a significant event on its own, interacted with
the alignment of AO-driven meridional flows to drive the northward transport of Gulf moisture along the
entire length of the Mississippi River valley.

5.4. Lake Effects

Climatological characteristics are distinguished across the western end of Lake Superior and reflect the influ-
ence of the lake on T (northwestern shore) and P (to the southeast), both of which can be linked to the ther-
mal inertia of Lake Superior surface waters during seasonal transition periods. Warm lake surface waters in
autumn and winter enhance the land-lake temperature contrast, contributing also to strong P gradients
across the lake from lower accumulations in the northwest to higher totals to the southeast. Delayed ice for-
mation in warm winters allows a longer period of surface evaporation, feeding lake-effect P maxima to the
southeast through both autumn and winter. Conversely, Lake Superior ice cover that extends well into spring
in some years may contribute to diminished spring P as well as delayed last spring frost dates for that area.
Because of the thermal and moisture effects of the lake, we anticipate that vegetation phenological transi-
tions in the spring season for areas south and east of Lake Superior are typically delayed several days, possibly
weeks, compared with those transitions west and north of the lake.

The influence of Lake Superior and its own changes over time on the climatology of our study area is substan-
tial, including both recent lake warming [Austin and Colman, 2007, 2008; Van Cleave et al., 2014; O’Reilly et al.,
2015] and changing ice phenology [Assel, 2003; Howk, 2009; Wang et al., 2012; Assel et al., 2013].
Observational studies regarding the effects of the Great Lakes on their surrounding land areas [e.g., Li
et al., 2010] remain essential to our growing understanding of land-atmosphere processes in the surrounding
forest areas. Given their prevalence on the study area landscape (Figure S1), the roles of smaller lakes in regio-
nal climatology and forest phenology are also of interest to our work [Johnson and Stefan, 2006; Plank and
Shuman, 2009; Mishra and Cherkauer, 2011; Mishra et al., 2011a, 2011b]. Overall, while we remain interested
in phenological events in the autumn season and the potential effects of Lake Superior thermal inertia on
delayed timing of those events in the vicinity of the lake, the spring transition and its complexity because
of that proximity are vital for understanding phenological transitions at the start of the vegetation growing
season and will be an interesting point of focus in future work.

5.5. Potential Applications

Our analyses indicate that climatological influences are strongly heterogeneous across our study region but
may be relatively homogeneous, or at least similar, over smaller distances on the order of 100 km. An analysis
of climate trends in this area requires detailed examination of patterns at the subregional scale. We cannot
assume that climatology and its influences on forest areas southeast of Lake Superior are similar to those
in areas northwest of the lake or even that climatology is consistent throughout the nearby ecoclimatic ten-
sion zone. Along the northern shore of Lake Superior in Minnesota, an analysis of climatological influences on
forest phenology and health must include localized details. Different regimes of land-atmosphere interaction
among these regions may require differing approaches to the identification of dominant influences on forest
phenology, the causes of forest disturbances, and the processes involved in postdisturbance forest recovery.
Recent and continued climatic changes may promote altered trajectories of forest health (e.g., due to moist-
ure stress and other disturbance factors) and forest species composition (favoring more temperate and
drought-resistant species) [Duveneck et al., 2014a, 2014b], complicating options for regional forest manage-
ment toward long-term goals [Rittenhouse and Rissman, 2015]. Trophic interactions between forest vegeta-
tion, insects, and wildlife become more uncertain with altered timing of phenological events [Foster et al.,
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2013; Roberts et al., 2015]. Forest managers with responsibility for planning winter and dry-season harvest ter-
ritories, or for undertaking intervention activities to mitigate forest disturbances due to insect pests and fire,
can benefit from any potential improvements in seasonal predictability.

We seek a better understanding of recent climate and forest phenological variability to support the develop-
ment and validation of land surface models that incorporate both permanent and transient land cover
change as well as seasonal vegetation processes [White et al., 1997]. There is an increasing need for improved
accuracy in representation of land surface states and processes as regional and global climate models pro-
gress from relatively coarse (Δx= 10–100 km [Prein et al., 2015]) to finer representative scales. As we develop
a better understanding of this coupled system at a range of spatial and temporal scales, we will enable the
capability to model feedback between forest phenology and climate change at local scales [Peñuelas et al.,
2009; Richardson et al., 2013; Brzostek et al., 2014], essential for accurate assessments of forest carbon states
and their spatiotemporal variability [Desai et al., 2008; Jeong et al., 2013; Schwartz et al., 2013; Lu et al., 2015].

In regions such as the Great Lakes, we must exercise caution: most land-atmosphere models do not yet incor-
porate even large lakes in the physical system, producing often significant errors in the simulation of tem-
perature and moisture fluxes [Bryan et al., 2015]. A number of researchers have pursued better
parameterizations of lake processes for use in energy- and water-balance models [Plank and Shuman,
2009; Mishra et al., 2010] and for proper representation of lakes in regional climate models [Gula and
Peltier, 2012; Bennington et al., 2014; Mallard et al., 2014]. It is important that large and small lakes, their sur-
face temperatures and winter ice phenology, and their influences on surrounding areas are properly included
in analyses of climate change effects on temperature and precipitation patterns and trends, so that regional
modeling efforts [Hayhoe et al., 2010; Gula and Peltier, 2012; Mallard et al., 2014; Harding and Snyder, 2015;
Notaro et al., 2015] can provide more accurate insight and guidance to scientists and decision-makers.

6. Conclusions

A wide variety of environmental factors contribute to seasonal and year-to-year variabilities in forest phenol-
ogy around the Upper Great Lakes. In this work we have identified several trends showing recent and likely
ongoing changes to the climatological growing season and the availability of moisture to regional forests.
Our results also show large spatial variability in trends such as autumn and winter warming, diminishing sum-
mer precipitation, and the extension of the climatological growing season into autumn. Dry summers can
lead to moisture stress that impairs carbon uptake rates and may render the forest more vulnerable to
disturbance factors.

Our new definition of the climatological growing season, based on a warm-season plateau in accumulated
chilling days, provides information that can be combined with observations of the traditional frost-free grow-
ing season to show the speed, and potential dangers to vegetation, of the transition seasons. The timing and
rates of spring green-up and autumn senescence can have large variability and have significant impacts on
the seasonal carbon assimilation capacity of affected forest areas. The extension of warm periods into
autumn can alter the environmental cues for leaf senescence and the preparation of trees for winter condi-
tions, potentially impacting phenology in the following growing season as well. It is important to note that
while meteorology changes with the season, and climate factors change from year to year, trees in the forest
maintain memory of these conditions through the impacts on phenology and growth in subsequent seasons
and thus over a lifetime.

Adding to the complexity of the study area, Lake Superior exerts an identifiable influence on surrounding and
especially downwind land areas. The warming lake, with its changing winter ice phenology, contributes to
winter warming in the immediate vicinity of the lakeshore. One of the greatest potential influences of Lake
Superior on regional phenology is the contribution of longer ice-free periods in autumn and winter to
lake-effect precipitation in large forest areas south and southeast of the lake. The resulting extension of cold
periods later into spring may delay spring green-up in those areas at the time of year when seasonal leaf
expansion and wood production are vital to the relative competitive advantages of different species in mixed
forests, affecting both carbon sequestration and resource optimization to sustain optimum growth rates
through the remainder of the warm season. Forest management in the context of climate changemust there-
fore consider the range of factors affecting the critical green-up and senescence periods bounding the
growing season.
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Finally, our work provides valuable support for an observational effort to understand long-term changes in
vegetation phenology including seasonal environmental cues and the impacts of climatological variability
on forest phenology, disturbances, and postdisturbance forest recovery. All of these processes inform our
developing understanding of forest responses to recent and ongoing climate change. Feedback from surface
conditions (including lakes, land cover, land use, snow cover, vegetation phenology, and forest disturbances)
to the climate system [e.g., Sobolowski et al., 2010; Richardson et al., 2013; Rydzik and Desai, 2014] are integral
to the coevolution of the land-atmosphere system and thus important to any examination of
regional phenoclimatology.

Appendix A

Seasonal and annual climatological indicators examined in this work. Traditional seasons are defined as
90 day periods ending on the equinox and solstice dates.

Temperature indicators (from spatially interpolated GHCND station data records)

1. Winter mean and temporal standard deviation of Tmin, Tmax, and Tavg (°C)
2. Spring mean and temporal standard deviation of Tmin, Tmax, and Tavg (°C)
3. Summer mean and temporal standard deviation of Tmin, Tmax, and Tavg (°C)
4. Autumn mean and temporal standard deviation of Tmin, Tmax, and Tavg (°C)
5. Annual (365 day) mean and temporal standard deviation of Tmin, Tmax, and Tavg (°C)

Precipitation indicators (from spatially interpolated GHCND station data records)

1. Winter total precipitation (cm) and precipitation days (P> 0)
2. Winter moderate (1 cm< P ≤ 2.5 cm) and heavy (P> 2.5 cm) precipitation days
3. Spring total precipitation (cm) and precipitation days (P> 0)
4. Spring moderate (1 cm< P ≤ 2.5 cm) and heavy (P> 2.5 cm) precipitation days
5. Summer total precipitation (cm) and precipitation days (P> 0)
6. Summer moderate (1 cm< P ≤ 2.5 cm) and heavy (P> 2.5 cm) precipitation days
7. Autumn total precipitation (cm) and precipitation days (P> 0)
8. Autumn moderate (1 cm< P ≤ 2.5 cm) and heavy (P> 2.5 cm) precipitation days
9. Annual (365 day) total precipitation (cm) (evaluated on 31 December)

Lake Superior (from NSIDC/MIFL records)

1. Ice-on and ice-off dates (day of year)
2. Ice duration (days)

Cold season indicators (derived from daily gridded data set)

1. CD and CDD at beginning of plateau (accumulated from 1 July using Tavg)
2. FD at beginning of plateau (accumulated from 1 July using Tmin)
3. Cold season intensity (CSI, calculated by using plateau CDD and CD, in °C)
4. Date (day of year) of last spring freeze/frost (using Tmin)
5. Date (day of year) of first autumn freeze/frost (using Tmin)

Warm season indicators (derived from daily gridded data set)

1. Duration of frost-free season (days)
2. Date (day of year) at beginning of CD plateau (using Tavg)
3. Date (day of year) at end of CD plateau (using Tavg)
4. Duration of CD plateau (days)
5. GDD at date of beginning of CD plateau (accumulated from 1 January by using Tavg)
6. GDD at date of last spring freeze/frost (accumulated from 1 January by using Tavg)
7. GDD accumulated during spring and summer (using Tavg)
8. GDD at date of end of CD plateau (accumulated from 1 January by using Tavg)
9. GDD accumulated during CD plateau (using Tavg)
10. Growing season intensity (GSI, calculated from plateau GDD and duration, in °C)
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