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A B S T R A C T   

Repeat digital photography at or near ground-level is a proven and efficient approach for tracking plant 
phenology. Here, we explored the potential to monitor phenology using the Snapshot Wisconsin (SW) trail 
camera network, a citizen science program. Using three curve-fitting methods for characterizing phenological 
transition dates, we assessed the phenological offset between understory vegetation and the overstory canopy in 
the trailcam observations and compared variations in derived phenology over the different spatial scales rep
resented by trailcams (~20–50 m), Harmonized Landsat and Sentinel-2 (HLS, 30 m), and Moderate Resolution 
Imaging Spectroradiometer (MODIS, 500 m). Our results showed that the apparent phenological offset between 
understory and overstory vegetation differed among forest types: in broadleaf deciduous forests, understory 
vegetation had an earlier start-of-spring (SOS) and later end-of-autumn (EOA) than the overstory canopy; in 
mixed forests, the understory showed an earlier SOS than the overstory, but no significant difference in EOA; in 
evergreen conifer forests, neither SOS nor EOA differed significantly between the understory and overstory. We 
found moderate correlations (0.25 ≤ r ≤ 0.57) between trailcam- and satellite-derived phenological dates. 
Moreover, those derived dates varied significantly among the applied curve-fitting methods: total growing season 
length (from SOS to EOA) could be 19 days longer for a threshold-based method than for a logistic curve-fitting 
method (our reference model), but 17 days shorter than the logistic method when using a piecewise-continuous 
method based on fitted sine curves. Despite the spatial limitations of trailcams for characterizing phenology on 
landscape and regional scales, trailcam networks have considerable potential for informing local phenological 
studies and disentangling the many drivers of phenology that can remain undetected from the satellite 
perspective.   

1. Introduction 

The timing of biological events during the annual growth cycle such 
as budburst and leaf expansion, flowering and fruiting, and leaf senes
cence and abscission are generally referred to as plant phenology. In a 
given year, the phenological progression is a valuable diagnostic of 
vegetation processes in ecosystems and their response to weather, 
especially temperature and moisture availability. Over medium to long 
time scales, changes in phenology may be associated with climate 
change (Monahan et al., 2016; Schwartz et al., 2006; Wolkovich et al., 
2012). For example, increased late winter and spring temperatures can 
advance spring phenology in temperate regions, but may have variable 

effects on autumn senescence (Badeck et al., 2004; Chmielewski and 
Rötzer, 2001; Cleland et al., 2007; Peñuelas, 2001; Walther et al., 2002). 
Climate-driven shifts in the timing of phenological events can, in turn, 
have both positive and negative feedbacks on that climate change 
(Desai, 2010). Through photosynthesis, carbon sequestration, and 
transpiration, vegetation phenology is a primary component in the 
intertwined exchanges of energy, carbon and water at the land surface 
(Peñuelas et al., 2009; Richardson et al., 2013). 

Traditional monitoring of phenology requires in-situ observers to 
record the timing of specific biological events such as budburst, flow
ering or fruiting (Haggerty and Mazer, 2008). In the past decades, 
several observation networks such as the USA National Phenology 
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Network (NPN) (Elmendorf et al., 2016; Schwartz et al., 2012) and the 
European Phenology Network (EPN) (van Vliet et al., 2003) have been 
established, with these networks located primarily in temperate (i.e., 
seasonal) ecosystems. A disadvantage of individual-based networks is 
that the observations, even as a collection, do not often describe 
phenological patterns across the landscape that result from varying 
species mixtures and from environmental gradients in soil types, 
topography and microclimate variability. 

To extend this paradigm, satellite-based remote sensing provides an 
opportunity for observing phenology at large scales and over increas
ingly longer time periods. Various phenological analyses have used 
NASA/USGS Landsat missions with 30-m pixels (Dong et al., 2015; 
Fisher et al., 2006; Melaas et al., 2016b, 2013; Nijland et al., 2016; 
Walker et al., 2012), NASA EOS Moderate Resolution Imaging Spec
troradiometer (MODIS) with pixel sizes from 250 m to 1 km (Fisher and 
Mustard, 2007; Ganguly et al., 2010; Sakamoto et al., 2005; White et al., 
2009; Zhang et al., 2003), and ESA Sentinel-2 missions with 10-m pixels 
(Melaas et al., 2016b; Vrieling et al., 2018). Ongoing work addresses 
uncertainties in observations due to sensor calibration, atmospheric ef
fects, cloud contamination, and bidirectional reflectance distribution 
function (BRDF) effects (Fisher and Mustard, 2007; Zheng and Zhu, 
2017). 

Repeat digital photography at or near the ground has been demon
strated as a useful tool for monitoring plant phenology (Brown et al., 
2016) and is one of the principal methods by which the satellite-based 
observations can be validated directly. By tracking color changes in 
digital images, the timing of key phenology stages such as leaf growth, 
flowering, and senescence can be identified. Unlike traditional field 
observations, and depending on their point of view, “phenocameras” can 
capture phenology over areas from ~10 m2 to a hectare or more, helping 
bridge the spatial gap between traditional ground- and satellite-based 
observations. A number of phenocamera networks have been estab
lished worldwide: PhenoCam in North America (Richardson et al., 
2018a,b), EuroPhen in Europe (Wingate et al., 2015), PEN (Phenological 
Eyes Network) in Japan (Nasahara and Nagai, 2015), and APN 
(Australian Phenocam Network) in Australia (Moore et al., 2016). These 
data have been widely used to validate satellite-derived phenology 
(Hufkens et al., 2012; Klosterman et al., 2014; Melaas et al., 2016a,b; 
Richardson et al., 2018a,b), a practice now common enough that several 
software packages have been developed for community use in pre
processing and extracting phenology information from phenocamera or 
satellite images (e.g., Phenopix, Filippa et al., 2016; Phenocamr, Hufk
ens et al., 2018, and TIMESAT, Eklundh and Jönsson, 2016). 

Methods for deriving phenological metrics from time-series data, 
such as the start and end of the growing season, can generally be divided 
into two categories: (1) those based on specific thresholds in the filtered 
time series, or (2) those based on inflection points in smooth curves 
fitted to the time series. For the first method, a set of local or global 
functions is often applied to the time series for noise reduction as by 
median smoothing (Reed et al., 1994), moving average (White et al., 
2009), Savitzky-Golay filter (Chen et al., 2004), local splines (Richard
son et al., 2018a,b) and double logistic functions (Beck et al., 2006; 
Zhang et al., 2003). Pre-defined thresholds are then identified in the 
smoothed time series to determine the dates when phenological transi
tions are assumed to occur (Myneni et al., 1997; Richardson et al., 
2018a,b). The second method fits time series data with global functions, 
such as the commonly used logistic function (Beck et al., 2006; Zhang 
et al., 2003), an asymmetric Gaussian function (Jonsson and Eklundh, 
2002) or a harmonic function (Moody and Johnson, 2001). Phenological 
transition dates are then determined by identifying the extrema and 
inflections of the fitted curves and their derivatives. 

Here we assess the potential for using image time series from a 
network of trail cameras (“trailcams”) to characterize phenology. 
Trailcams differ from phenocameras in design, cost, objective, use, and 
placement. Trailcams are typically used by citizens, researchers, and 
wildlife agencies to track animal activity (Steenweg et al., 2017) and are 

thus a potentially rich resource for monitoring vegetation, especially if 
programmed to obtain dedicated photos at a common time each day to 
generate time lapse sequences. Because of their placement, usually at 
about 0.75–1.0 m above the ground, trailcams provide a unique 
perspective on both overstory and understory phenology, which 
generally remain indistinct in most phenocam- and satellite-based ana
lyses (but see St. Peter et al., 2018). 

The Snapshot Wisconsin (SW) trailcam network used in this study is a 
citizen science effort: cameras provided by the Wisconsin Department of 
Natural Resources are placed on both public and private lands, ensuring 
wider and more diverse spatial coverage than networks that may be 
restricted to public lands alone. Snapshot Wisconsin is a broad scale 
citizen science and crowdsourcing effort to deploy more than 2000 
motion-triggered trailcams in natural ecosystems, primarily forest areas, 
across Wisconsin with an ultimate goal density of one camera per 23.3 
km2 (9 mi2, equivalent to a quarter-township in the US Public Land 
Survey System). An overall objective of SW is to link wildlife observa
tions via trailcams with satellite-based observations of vegetation 
phenology, productivity, composition, and fragmentation to aid analysis 
and prediction of wildlife distributions, community composition, and 
behavior in space and time (Clare et al., 2019; Locke et al., 2019; 
Townsend et al., in review). A key objective of continuously operating 
trail cameras is to observe how animal occurrence and behavior vary 
seasonally, and in conjunction with seasonal variation in vegetation 
density and vigor that provide wildlife forage and shelter resources 
(Townsend et al., in review). 

The SW cameras provide a unique daily record with photos of 
vegetation recorded at 10:40 AM local time each day, regardless of 
wildlife activity, that can be used to understand and validate pheno
logical interpretations from satellite imagery. In this study, we used a 
preliminary set of SW time-lapse images to compare interpretations of 
phenology from satellite remote sensing with those derived from daily 
trailcam photos. We linked a unique combination of datasets to address 
three questions. First, are the derived and extracted phenological tran
sition dates for a given location consistent across the available trailcam 
and satellite data sources? Second, to what extent can each data source 
used here (trailcams, HLS, and MODIS images) detect local differences 
between understory and overstory green-up and senescence dates? 
Finally, do different methods used to extract phenological transition 
dates from the trailcam time series lead to systematic differences be
tween their results? 

2. Study sites 

Snapshot Wisconsin covers the state of Wisconsin (longitude − 86.25 
to − 93.14◦W, latitude 42.30–47.17◦N), USA (Fig. 1). Elevation ranges 
from 177 m ASL along the Lake Michigan shore to 595 m in north central 
Wisconsin. The statewide annual temperature (from 1971 to 2000) av
erages 6.2 ◦C, with the lowest monthly temperature (− 10.4 ◦C) in 
January in the northwest and the highest (20.6 ◦C) in August in the 
south. The average annual precipitation in Wisconsin is 830 mm, with 
the lowest monthly precipitation (30 mm) in January and the highest 
(110 mm) in August (http://www.aos.wisc.edu/~sco/). The growing 
season typically extends 4–6 months (May through October) with earlier 
springs being observed as climate has generally warmed across Wis
consin and the midwestern US over the past 30 years (Schwartz et al., 
2006; Morin et al., 2009; Serbin and Kucharik, 2009; Jeong et al., 2011; 
Ault et al., 2015; Garcia and Townsend, 2016). 

Land cover in Wisconsin is ~39% forested land (6.7 million ha), with 
most of that forest area occurring in the northern half of the state (Fig. 1, 
Wiscland 2.0 land cover map from https://dnr.wi.gov/maps/WISC 
LAND.html). Wisconsin crosses distinct ecotones between central 
mixed hardwoods, savanna and sub-boreal forests. As such, the types of 
forests are widely varied: (1) evergreen needleleaf forest in the north, 
dominated primarily by Picea mariana (black spruce) and P. glauca 
(white spruce) with Abies balsamea (balsam fir), Pinus strobus (white 
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pine), P. resinosa (red pine), and P. banksiana (jack pine); (2) deciduous 
broadleaf forest commonly dominated by a variety of oaks (Quercus 
spp.) in the south and west and in the north by Populus tremuloides 
(quaking aspen) and hardwoods including Acer saccharum (sugar 
maple), Fraxinus americana (white ash), Tilia americana (basswood), 
Betula alleghaniensis (yellow birch), and A. rubrum (red maple); and (3) 
areas of mixed deciduous/evergreen forest throughout the state. 

3. Data and methods 

3.1. Trail camera images 

Snapshot Wisconsin is a volunteer-based citizen science project for 
monitoring wildlife populations across the state through the use of 
motion-activated trail cameras. Between 2015 and fall 2020, more than 
1800 volunteers have been enrolled to deploy and maintain more than 
2000 cameras in Wisconsin (Townsend et al., in review). The trailcams 
(Bushnell® Trophy Cam, 35◦ field-of-view in RGB channels) were 
mounted on mature trees approximately 1 m above the ground, facing 
north if possible. This setting allowed cameras to capture a wide variety 
of wildlife activity as well as the conditions of both understory vegeta
tion and the lower/middle parts of overstory canopies. When motion is 
detected, as for animal movement within the field of view (FOV), the 
cameras are triggered to take sequential images. The images are then 
uploaded by citizen scientists to the SW database and the animals 
appearing in the images are identified through a variety of classification 
approaches, including crowdsourcing (Clare et al., 2019). In addition to 
motion-triggered images, each camera is programmed to collect one 
dedicated image daily at 10:40 am local time from which we have 
constructed the phenological time series for this study. 

The SW camera network is being rolled out over several years due to 
the large number of cameras required and considerable investment for 
camera acquisition and citizen training. In addition, the time between 
photo acquisition and upload may delay photo availability up to 6 
months. Due to these and other technical issues (e.g., battery failure, 
instrument malfunction), not all cameras capture a full phenological 
cycle time-series for the early SW (2015–2017) project period. In addi
tion, some cameras experienced positional shifts such that not all cam
eras provided continuous images for a consistent FOV. In this study, we 
use daily image time series from 191 cameras in operation during 
2015–2017 to construct the phenological curves in our analyses. To deal 
with cameras with less than a full annual phenological cycle, we divided 
the data into approximate half-years (days 1–200 and 200–365) to 
analyze spring and autumn phenology separately. 

Based on camera images, we visually classified the overstory canopy 
into three forest types: (1) needleleaf evergreen forest; (2) broadleaf 
deciduous forest; (3) mixed forest. The understory vegetation was 
generally a mixture of shrubs, forbs, and graminoids. Preprocessing of 
imagery entailed first manually delineating regions of interest (ROIs) for 
overstory and understory canopies on each image (Fig. 2), after which 
the average RGB digital number (DN) values within each ROI were 
extracted for construction of data time series. Outlier images were then 
excluded, most commonly due to blurring caused by condensation on 
the camera lens. Under- and overexposed images due to variable scene 
illumination were excluded following Richardson et al. (2018): 

DNred,ROI +DNgreen,ROI +DNblue,ROI

{
< 100, underexposed
> 600, overexposed (1)  

where DNred, DNgreen, and DNblue are the detector response values (range 
0–255) in the trailcam image RGB channels, respectively. An example 

Fig. 1. Trail camera locations from 2015 to 2017 used in the analysis. Values in parentheses are the percentages of area covered by land cover type according to 
Wiscland 2.0. 

N. Liu et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observations and Geoinformation 97 (2021) 102291

4

image time series for the first day of each month throughout the year 
(Fig. 2) illustrates the delineation of understory and overstory ROIs, for 
which we then calculated the green chromatic coordinate (GCC; 
Richardson et al., 2018a,b): 

GCC =
DNgreen

DNred + DNgreen + DNblue
(2) 

Fig. 2 also demonstrates an example of the GCC timeseries of un
derstory vegetation and overstory canopy at this trailcam location. For 
more examples, please refer to Supplementary Fig. S-1. 

3.2. Remote sensing data 

3.2.1. HLS and supplemental Landsat-7 images 
The NASA harmonized Landsat–Sentinel (HLS; Claverie et al., 2018) 

surface reflectance dataset integrates the reflectance products from the 
Landsat-8 Operational Land Imager (OLI, 16-day repeat cycle) and the 
Sentinel-2 (A and B, 10-day repeat cycle) Multi-Spectral Instrument 
(MSI) sensors to produce three surface reflectance products: S10, L30 
and S30. The S10 product is derived from the Sentinel-2 L1C reflectance 
dataset and has eleven spectral bands with varying spatial resolutions: 

10 m, 20 m and 60 m. The S30 product is derived from the S10 product 
by spectral adjustment (using Sentinel-2 bands 1–4 and 9–11) and then 
spatial resampling to the characteristics of the Landsat-8 OLI sensor at 
30-m pixel resolution. The L30 product consists of the surface reflec
tance derived from the Landsat-8 L1T product, which is regridded to the 
Sentinel-2 tiling scheme. Both S30 and L30 are then delivered as nadir- 
view BRDF-adjusted surface reflectance (NBAR) products to aid in the 
generation of consistent observation time series. We thus used the 
multispectral S30 and L30 pixels at each trailcam location to extract 
band values and determine HLS-based phenological transition dates. 

The QA layer provided in each of the two products was used to 
remove pixels contaminated by clouds or cloud shadows. Due to cloud 
contamination, some trailcam locations did not have enough HLS data 
points for constructing satellite-based phenological time series. In these 
cases, we added pixel values extracted from several Landsat-7 ETM+

images to our analyses. Although the ETM+ product is not radiometri
cally calibrated to HLS, Mishra et al. (2014) showed that radiances ob
tained simultaneously from the Landsat-7 ETM+ and Landsat-8 OLI 
instruments are already closely aligned. Also, we applied the outlier 
filtering (see Section 3.4) to further reduce discrepancies between 
Landsat-7 ETM+ and HLS products. 

Fig. 2. Example time series of trailcam images on sampled dates for 2017 and the extracted daily GCC time series (Eq. (2)). White boxes in the June image illustrate 
the placement of ROIs for extraction of understory vegetation and overstory canopy GCC values. 

N. Liu et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observations and Geoinformation 97 (2021) 102291

5

3.2.2. MODIS images 
The MODIS NBAR product (MCD43A4, Version 006; Schaaf et al., 

2002) provides daily surface reflectance for seven spectral bands at a 
spatial resolution of 500 m, from which we use only those bands 
centered at 470 nm (blue), 640 nm (red), and 858 nm (NIR). The 
MCD43A4 product uses both NASA Aqua (MYD09) and NASA Terra 
(MOD09) daily reflectance observations within a 16-day period to cor
rect the BRDF effect of the land surface and produces reflectance values 
as if viewed in nadir orientation. In this work we used only reflectance 
values indicated as “good” in the product quality assessment image (QA 
= 0, with full BRDF inversions). 

3.3. Vegetation index 

For this study, we used the Enhanced Vegetation Index (EVI; Huete 
et al., 2002) as our indicator of greenness in satellite (HLS and MODIS) 
pixels. EVI was calculated as: 

EVI = 2.5 ×
RNIR − Rred

RNIR + 6.0 × Rred − 7.5 × Rblue + 1.0
(3)  

where Rblue, Rred and RNIR are the pixel reflectance values (range 0–1) in 
the blue, red, and NIR bands, respectively, from either HLS, Landsat-7, 
or MODIS sources (see Section 3.2.2). EVI is useful for reduction of at
mospheric distortion (e.g., from thin cirrus clouds, smoke and haze, etc.) 
and as an indicator of vegetation photosynthetic vigor that does not 
saturate in areas of high leaf area index (LAI) like the Normalized Dif
ference Vegetation Index (NDVI). 

3.4. Extracting phenological transition dates 

A procedure detailed by Richardson et al. (2018a,b) was used to 

remove outliers and otherwise smooth the ground-based GCC and 
MODIS-based EVI time series. Shown here in Fig. 3a, this approach it
erates over the time series (the blue and red dots) using a moving win
dow to fit local spline curves (the black curve) and to identify data points 
as outliers (the red dots) that lie more than two standard deviations 
above or one standard deviation below the fitted splines. However, we 
found that this method did not work well for the HLS-based EVI time 
series, likely because those contained fewer observations than the 
trailcam- and MODIS-based time-series, making the fitted spline curves 
more sensitive to localized subsets within the time series. For the HLS- 
based time series, we iteratively fitted a global logistic function 
(described below) and removed as outliers those observations occurring 
more than ±0.05 EVI units from the fitted curve. 

Three methods were used to extract key phenological transition 
dates from the time series: (1) a four-parameter logistic-curve method 
(Zhang et al., 2003), (2) a threshold-based method using the fitted spline 
curves (Richardson et al., 2018a,b), and (3) a piecewise-continuous sine- 
curve method (Garcia, 2018). We added the sine-curve approach 
because testing indicated that its fitting resulted in lower RMSE than 
other approaches (Garcia, 2018). The logistic-curve and sine-curve 
methods fit the spline-smoothed time series in two separate parts, 
with DOY 1–200 for the spring season and DOY 200–365 for the autumn 
season (see Fig. 3b and d), using the equations in Table 1. 

Six phenologically significant transition dates (Fig. 3c) were 
extracted from these fitted curves by finding the local minima, maxima, 
or inflection points of the fitted curves (Garcia, 2018; Zhang et al., 
2003): the start of spring (SOS), spring inflection (SI), start of maturity 
(SOM), end of maturity (EOM), autumn inflection (AI), and end of 
autumn (EOA). For the threshold method, these dates were identified 
when 10% (for SOS and EOA), 50% (for SI and AI), and 90% (for SOM 
and EOM) of the time series amplitude were reached. 

Fig. 3. Outlier detection using fitted spline curves (a) and the three extraction methods used to identify phenological transition dates (b–d) as described in the text. 
Note that spring (DOY 1–200) and autumn (DOY 200–365) periods are fitted separately using the indicated methods. 
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3.5. Statistical analysis 

To test the utility of the datasets and their relationships to each other, 
we compared phenological dates derived by the three extraction 
methods, differences in phenology between understory vegetation and 
the overstory canopy, and differences in phenology derived at different 
spatial scales using satellite-based observations. To evaluate their con
sistency, we calculated the following statistics for each comparison: the 
Pearson correlation coefficient (r) between paired samples, the differ
ence in means between the two samples, and Student’s paired t-test to 
indicate those differences in sample means that are significant at p =
0.05. 

4. Results 

4.1. Comparisons of phenological indicators across curve-fitting methods 

We use the logistic-curve methods as our “base” result for compari
sons with other methods, largely because logistic methods are most 
common in the literature (Atkinson et al., 2012; Beck et al., 2006). It 
should be noted that the phenology results from HLS images were not 
used here since we applied only logistic-curve fitting to that dataset (see 
Section 3.4). The SOS and EOA dates derived from the three methods 
align along a 1:1 line, but have substantial offsets when comparing 
understory, overstory and MODIS phenology (Fig. 4). Moderate to 
strong correlations (r = 0.55–0.84, with all observations used) were 
found among the methods. The logistic-curve method had the strongest 
correlation with the sine-curve method, which was not surprising 
considering both of these methods use global functions with similar 
shapes, while the threshold method uses local spline functions to fit the 
time series. The threshold method produced some extremely early SOS 
dates (circled in Fig. 4A). In addition, the EOA estimated by the 
threshold method tended to an asymptote near DOY 300 while the EOA 
derived from the logistic-curve method increased among sites (Fig. 4C). 
This illustrates why the correlation between the logistic-curve and 
threshold methods was weaker than that between the logistic-curve and 
sine-curve methods. 

The t-test results indicated that there were statistically significant 
differences in phenological transition dates derived by the different 
curve-fitting and extraction methods. The threshold method yielded a 
later SOS and earlier EOA than the logistic-curve method, with average 
differences between these two methods of 4.0 days for SOS and 15.0 
days for EOA. The sine-curve method, however, produced an earlier SOS 
(by 6.7 days) and later EOA (by 8.7 days) than the logistic-curve 
method. The overall growing season length (SOS to EOA) estimated by 

the threshold method was thus 19.0 days longer than that estimated by 
the logistic-curve method, while the sine-curve estimated growing sea
son to be 14.9 days shorter than that using the logistic-curve. 

4.2. Comparison of overstory and understory indicators using trailcam 
images 

The unique perspective of the trailcam image dataset, located just 
above the ground and often well below the forest canopy, provides an 
opportunity to distinguish between forest understory and overstory 
phenological phases in a manner that is typically not available from 
satellite-based observations. Figs. 5 and 6 compare phenological tran
sition dates (SOS and EOA, respectively) for understory vegetation and 
overstory canopies as derived from trailcam observations. To avoid 
unwanted model-related effects, such as a phenological offset between 
understory and overstory caused by different curve-fitting models, the 
understory and overstory results from the three methods were assessed 
separately. In general, weak to moderate correlations (r = 0.17–0.59) 
were found between understory and overstory canopies for each method 
and phenological stage. However, the correlations of SOS for the ever
green and mixed forest locations should be taken with some caution due 
to small sample sizes (evergreen forest: N = 8; mixed forest: N = 7). 

For trailcams in broadleaf deciduous forests, t-tests indicated 
significantly earlier SOS and later EOA for the understory vegetation 
compared to the overstory canopy. The magnitude of this phenological 
difference varied with the fitting method used: the SOS difference be
tween understory and overstory was nearly 6 days by the logistic-curve 
method but more than 8 days by the other two methods. 

For trailcams located in evergreen forests, however, the differences 
between understory and overstory phenology were less consistent 
among the various curve-fitting methods. The logistic-curve method 
suggested that the SOS of the evergreen understory was significantly 
earlier than that of the overstory, although the other methods suggested 
the opposite: the SOS of the evergreen understory was later than that of 
the overstory canopy, though not significantly so. The EOA of the 
evergreen understory was later than that of the overstory canopy by the 
sine-curve (statistically significant) and threshold (not statistically sig
nificant) methods, while the logistic-curve method showed no differ
ences in understory/overstory EOA phenology. 

Finally, for trailcams located in mixed forests, all methods suggested 
that the understory had an earlier SOS than the overstory, though this 
difference was statistically significant only for the sine-curve method. 
For the EOA phenological transition in mixed forests, none of the curve- 
fitting methods showed significant differences between understory and 
overstory phenology. 

Table 1 
Logistic-curve and sine-curve methods.  

Model Period Formula 

Logistic-curve Spring VISOS +
VISOM − VISOS

1 + e− (DOY− SI) 1 ≤ DOY ≤ 200   

Autumn VIEOA +
VIEOM − VIEOA

1 + e(DOY− AI) 200 ≤ DOY ≤ 365   

Sine-curve Spring 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

VSOS 1 ≤ DOY ≤ SOS
VSOS + VSOM

2
+

VSOM − VSOS

2
× sin

((

DOY −
SOM + SOS

2

)

×
π

SOM − SOS

)

SOS < DOY < SOM

VI200 − VISOM

200 − SOM
× (DOY − SOM) + VISOM SOM ≤ DOY ≤ 200      

Autumn 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

VIEOM − VI200

EOM − 200
× (DOY − 200) + VIEOM 200 ≤ DOY ≤ EOM

VEOA + VEOM

2
−

VEOM − VEOA

2
× sin

((

DOY −
EOM + EOA

2

)

×
π

EOA − EOM

)

EOM < DOY < EOS

VIEOA EOS ≤ DOY ≤ 365  

SOS: start of spring; SI: spring inflection; SOM: start of maturity. 
EOA: end of autumn; AI: autumn inflection; EOM: end of maturity. 
VIDOY : the VI value on a particular DOY; DOY: Day-Of-Year. 
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4.3. Comparison of phenological indicators across observation scales 

The general trends of SOS and EOA are comparable between the 
trailcam observations of understory vegetation and overstory canopy for 
MODIS retrievals (Fig. 7). The MODIS observations themselves cannot 
be separated into understory and overstory components, but these 
comparisons enable interpretation of the contributions of overstory and 
understory vegetation to surface phenology as sensed by MODIS. To 
mitigate the scale differences between 500-m MODIS pixels and a 

wedge-shaped area approximately 20–50 m across within the trailcam 
field-of-view (depending on vegetation density), we: (1) calculated the 
percentage of the dominant land cover within each MODIS pixel using 
the Wiscland-2.0 land cover map, (2) compared that result with the 
cover types observed at the trailcam locations, and then (3) excluded 
pairs of trailcams and corresponding MODIS pixels in which that cover 
type covered less than 70% of the MODIS pixel. Although this substan
tially reduced our sample size, all of the remaining MODIS pixels 
examined here can therefore be considered relatively ‘pure’ pixels and of 

Fig. 4. Comparison of the logistic-curve method with other methods (left column: the threshold method; right column: the sine-curve method). The tables show: (1) 
Pearson correlation coefficient (r); (2) the mean difference (Mean diff.) in dates between the logistic-curve method and other methods; and (3) the number of cameras 
(N) in the comparison. Circles in figures: phenological date outliers; see text for discussion. Asterisks indicate statistically significant differences in mean values via 
Student’s t-test at p = 0.05. Comparisons here were conducted using only MODIS and trailcam-based estimates. 
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a forest type that is consistent with the corresponding trailcam obser
vations on the ground. 

There was a moderate correspondence between MODIS and trailcam 
phenology at SOS and EOA, with correlations found in the range r =
0.25–0.57. For SOS, Student’s t-test indicated that curve fitting methods 
applied to MODIS observations yield understory green-up dates signif
icantly later than observed in trailcam time series. This is highly relevant 
to ecological interpretations of satellite phenology because understory 
green-up is a significant indicator of the onset of biological activity, as 
root processes commence prior to budburst and wildlife are dependent 
on high-nutrition early-season undergrowth for sustenance (Bischof 
et al., 2012). The average SOS difference between trailcam-based un
derstory and MODIS retrievals ranged from 6.6 to 11.4 days, depending 
on the curve-fitting and phenological extraction methods used. 

For EOA, Student’s t-test showed that the MODIS-based retrievals 
were generally later than both understory and overstory senescence in 
trailcam-based time series, with differences ranging from 8.7 to 14.8 
days. Overall, in comparison to trail camera observations, MODIS 

appears to observe the green-up of the overstory canopy most accu
rately, showing statistically insignificant differences from trailcam ob
servations only for overstory SOS dates, but exhibits a lag ranging from 
2 days to 2 weeks for understory SOS and both overstory and understory 
EOA forest phenology regardless of the curve-fitting and phenological 
extraction methods used. 

SOS and EOA estimates for the trailcam observations of understory 
vegetation and overstory canopy correlated weakly with HLS retrievals, 
and only where sample sizes were sufficient (Fig. 8). Compared to 
MODIS-derived results, the correspondence between HLS- and trailcam- 
based phenology was poorer, with correlations found in the range r =
0.22–0.33. Student’s t-test showed that the SOS of understory and 
overstory for coniferous forest was later than that of HLS. 

5. Discussion 

Variability in the curve-fitting and methods used to determine key 
phenological transition dates from satellite-based datasets can strongly 

Fig. 5. Comparisons of understory and overstory SOS retrievals using trailcam images. Top row: scatter plots for all curve-fitting methods (*: statistically significant 
difference in mean values via Student’s t-test at p = 0.05). Bottom row: (1) Pearson correlation coefficients (r); (2) the average phenological differences (Mean diff.) 
between understory and overstory SOS; and (3) sample size of cameras (N). 

Fig. 6. Comparisons of understory and overstory EOA retrievals using trailcam images. Top row: scatter plots for all curve-fitting methods (*: statistically significant 
difference in mean values via Student’s t-test at p = 0.05). Bottom row: (1) Pearson correlation coefficients (r); (2) the mean phenological differences (Mean diff.) 
between understory and overstory EOA; and (3) sample size of cameras (N). 
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influence our characterization of the phenological cycle. In this study, 
comparisons with in-situ trailcam observations have helped us quantify 
uncertainties in growing-season phenology resulting from different 
curve-fitting methods that range from − 8.9 to + 14.6 days. Though this 
is a smaller range than found in previous studies (de Beurs and Henebry, 
2010; Schwartz and Hanes, 2010; White et al., 2014), large uncertainties 
in satellite-derived phenology may have significant ramifications in the 
modelling of vegetation processes, quantifying nutrient cycles, and 
linking wildlife patterns to vegetation dynamics. Quantification of these 
uncertainties is important given that large areas of Earth lack in-situ 
data necessary to facilitate such comparisons. To take an example 
from carbon accounting in climate models, Jeong et al. (2012) showed 
that greater uncertainty in observed leaf onset dates led to greater 

variability in the estimated date when the ecosystem switches from a 
carbon source to a carbon sink. At smaller scales, as in wildlife ecology, 
such uncertainty can affect predictions of the availability of food re
sources (Bater et al., 2011), leading to large variability in population 
modeling outcomes. However, there remains a general lack of consensus 
on a preferred approach to satellite-based phenological analysis that 
could effectively reduce such uncertainties at all scales of application 
(Atkinson et al., 2012; de Beurs and Henebry, 2010; White et al., 2014, 
2009). 

When situated appropriately, trailcams offer a unique perspective for 
observing differences between understory and overstory phenology 
(Kobayashi et al., 2016; Liang et al., 2012). This is important when 
interpreting satellite-based phenology – i.e., land surface phenology – 

Fig. 7. Comparison of MODIS and trailcam-based SOS and EOA retrievals. Asterisk indicates statistically significant difference in mean values via Student’s t-test at p 
= 0.05; N: sample size of cameras; r: Pearson correlation coefficient; Mean diff.: the mean phenological differences between MODIS and trailcam-based 
phenology dates. 
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which incorporates greenness from only those components of the 
vegetation are exposed to the sensor. A phenological offset (earlier SOS 
and/or later EOA) between understory and overstory vegetation has 
been reported in previous studies (Augspurger and Bartlett, 2003; 
Mahall and Bormann, 1978; Richardson and O’Keefe, 2009; Sparling, 
1967; Uemura, 1994). In deciduous forests, understory vegetation may 
often green up earlier and senesce later than the overstory canopy to 
make greatest use of seasonal patterns in light availability (Kato and 
Komiyama, 2002; Richardson and O’Keefe, 2009). From the satellite 
perspective, however, phenological analyses can easily mistake early 
understory green-up for leaf development in the forest overstory or miss 
low-density understory vegetation entirely. In the late spring and early 
autumn, much of the photosynthetically active radiation (PAR) reaching 
the ground must pass through the overstory canopy, so the transmitted 

PAR becomes is more restricted with canopy closure. Through a strategy 
of “phenological escape” (Richardson and O’Keefe, 2009), shade- 
intolerant understory plants can take advantage of the high PAR 
before overstory canopy closure in the spring and after overstory 
senescence in the autumn. In our study, this understory phenological 
escape was most apparent in the broadleaf deciduous forest for both SOS 
and EOA, and in the mixed forest for SOS (see Figs. 5 and 6). The mean 
difference between understory and overstory SOS (~8 days) was com
parable to that reported in previous studies (Richardson and O’Keefe, 
2009). 

The extraction of evergreen needleleaf forest phenology from both 
trailcam and satellite sources remains a greater challenge, also as noted 
in previous studies (Bolton et al., 2020; Delbart et al., 2005; Jin and 
Eklundh, 2014; White et al., 2014). Seasonal VI variation ((max–min)/ 

Fig. 8. Comparison of HLS and trailcam-based SOS and EOA retrievals. Asterisk indicates statistically significant difference in mean values via Student’s t-test at p =
0.05; N: sample size of cameras; r: Pearson correlation coefficient; Mean diff.: the mean phenological differences between HLS and trailcam-based phenology dates. 
Student’s t-test was only applied to the coniferous SOS due to sample size. 
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max) was substantially smaller in the evergreen (22.22% = (0.45–0.35)/ 
0.45) than in the broadleaf deciduous forest (41.81% = (0.55–0.32)/ 
0.55). Bolton et al. (2020) recently derived a 30-m resolution land 
surface phenology product from the HLS images for Northern America. 
When validating the HLS-derived phenology with field PhenoCam- 
derived phenology, they found that 33 of 96 site-years did not have VI 
amplitudes greater than the prescribed minimum required by the algo
rithm to determine a phenological cycle. In addition, the presence of 
snow on coniferous trees around SOS and EOA greatly affected VI re
trievals around those dates (Jin and Eklundh, 2014), introducing large 
uncertainties in the estimation of evergreen seasonal phenology. Finally, 
many evergreen species may extend their needleleaf canopy all the way 
to the ground and may not support the consistent growth of understory 
vegetation. Overall, we found no consistent phenological differences 
between the evergreen forest overstory canopy and understory (Fig. 5), 
likely due to a relatively deficient and unvarying understory light 
environment when compared to deciduous and mixed deciduous forest 
locations. 

In this study, we investigated the phenological patterns of understory 
plants without regard to the many different species that exhibit varying 
adaptation strategies in the limited understory light environment 
(Mahall and Bormann, 1978; Richardson and O’Keefe, 2009). Mahall 
and Bormann (1978) found that species that green up early such as 
Erythronium americanum (yellow trout lily) and Claytonia virginica (Vir
ginia springbeauty), both present in Wisconsin deciduous broadleaf 
forests and known as vernal photosynthetics, tended to occur in loca
tions with high early-season PAR, while other species such as Uvularia 
sessilifolia (wild oats) and Clintonia borealis (blue-bead lily), also both 
present in Wisconsin forests, were more shade-tolerant and adapted to 
low PAR, remaining green in the understory environment well into the 
summer. As a result, vernal photosynthetic species may emerge soon 
after snowmelt but then abruptly senesce when the overstory canopy 
closes, while summer green species exhibit more gradual leaf expansion 
before overstory canopy closure and tend to endure through the summer 
shade period. Future research may focus on obtaining in situ observa
tions of phenological dynamics in different understory species and 
linking them to the phenological patterns observed from trailcams. 

It should be noted that numerous factors in addition to PAR such as 
air temperature and humidity (microclimatology), soil quality and 
nutrient availability, and local-scale hydrology are important drivers of 
understory phenology (Dittman et al., 2007; Keenan and Richardson, 
2015; Laskin et al., 2019; Liang et al., 2012; Piao et al., 2019; Yu et al., 
2016). Liang et al. (2012) found that understory vegetation was more 
sensitive than the overstory canopy to day-to-day changes in humidity 
during relatively dry growing seasons. Laskin et al. (2019) showed that 
the daily understory air temperature measured at ~1 m above the 
ground, the approximate height of the SW trailcams, could predict un
derstory phenology well. Some trailcam models record the temperature 
along with the time on their digital photographs, which could provide an 
invaluable additional source of data in future studies. 

Although HLS offers detailed spatial resolution (~30 m) and good 
temporal resolution (~5 days) for satellite observations, due to clouds 
there were still few pixels in 2017 (20–30) available for fitting pheno
logical curves. This data scarcity added uncertainty to the SOS and EOA 
dates estimated from HLS images in this study and may explain in part 
why HLS-based phenology correlated poorly with that derived from 
trailcams. Recent studies have shown that Sentinel-2 has high radio
metric and geometric consistency with other satellite data sources such 
as MODIS (Claverie et al., 2018) and Landsat (Claverie et al., 2018; 
Guzinski and Nieto, 2019; Pahlevan et al., 2019; Zhang et al., 2018). 
There is thus great potential for fusing Sentinel-2 observations with 
other satellite sources to fill gaps in, and improve the density of, 
growing-season phenological time series (Claverie et al., 2018; Gao 
et al., 2006; Vrieling et al., 2018; Walker et al., 2012; Wang et al., 2017, 
2016). Additional high-resolution data sources, such as daily 3-m Planet 
imagery with four spectral bands (from which we can calculate EVI), 

may enable better linkages between satellite imagery and trailcam 
photos at more appropriate spatial scales. For instance, Cheng et al. 
(2020) applied Plant imagery to extract phenology in semi-arid envi
ronment. They found that the phenology map derived from fine-scale (3- 
m) Plant imagery had fewer artifacts than that from coarse-scale (10-m) 
Sentinel imagery. Moreover, the phenology of individual trees could be 
differentiated from grassland surroundings by Planet imagery due to its 
high spatial resolution. However, challenges of applying Planet images 
at broad scales still remains due to its radiometric calibration (Houborg 
and McCabe, 2018; Leach et al., 2019; Wegmueller et al., in review). 
Recent work by Houborg and McCabe (2018) and Sadeh et al. (2021) 
indicated that 3 m Planet images could be radiometrically integrated 
with other coarse-scale satellite images (e.g., , 10 m Sentinel-2, 30 m 
Landsat and 500 m MODIS) with a better radiometric quality. 

The correlations between trailcam- and MODIS-derived phenology 
presented here are somewhat weaker than those for phenocam com
parisons with MODIS reported in previous studies (Fisher and Mustard, 
2007; Hufkens et al., 2012; Liang et al., 2014; Richardson et al., 2018a, 
b) but remain comparable to previous comparisons using sub-canopy 
digital cameras (St. Peter et al., 2018). This can be attributed to differ
ences in various settings and fields-of-view between the trailcams and 
the dedicated phenocams that are used in national and international 
networks. For phenocam studies, the cameras are situated above the 
forest canopy expressly to characterize phenology on scales of 10–100 
m. The phenocam FOV is therefore comparable with single-pixel areal 
coverage in satellite images (Fisher and Mustard, 2007; Richardson 
et al., 2018a,b). All of our trailcams were located beneath the forest 
overstory, and the area observed by our cameras was much smaller than 
a MODIS pixel, typically with representative spatial scales less than 20 m 
depending on the density of understory vegetation. Even though we 
characterized vegetation types within the trailcam images and excluded 
strongly mixed MODIS pixels from this analysis, scale-related issues 
remain prevalent in such comparisons: even within relatively pure 
MODIS pixels, with at least 70% of the pixel classified as the same cover 
type that was identified in the corresponding trailcam location, there 
remains the issue of local phenological variability at finer scales (Fisher 
and Mustard, 2007). In a recent study by Zhang et al. (2017), the stan
dard deviation of the SOS derived from 30-m resolution Landsat-8 im
agery within a heterogenous VIIRS (Visible Infrared Imaging 
Radiometer Suite) pixel could be 40 days. This is especially true of un
derstory vegetation, which is not characterized in existing land cover 
classifications. Several potential approaches to mitigating these dispar
ities have been proposed, such as image fusion using coarse-resolution 
MODIS images and high-resolution images, as from Landsat or 
Sentinel-2, to adjust and disaggregate the coarse dataset for phenolog
ical analysis at fine scales (Gao et al., 2006; Hilker et al., 2009; Roy et al., 
2008; Walker et al., 2012; Zhang et al., 2017). Another potential solu
tion involves aggregation of in-situ phenology observed at a collection of 
nearby field sites to larger scales, such as the area of a MODIS pixel 
(Bater et al., 2011; Huang et al., 2010; Liang et al., 2011; Liu et al., 2015; 
Melaas et al., 2016a; Vartanian et al., 2014). Dense trailcam networks 
represent an alternative methodology to verify satellite-derived metrics 
of phenology where phenocams or other observations are absent, and to 
assess the ecological interpretations about ground conditions that can 
only be inferred (not observed) from satellite data. Because trailcams are 
usually deployed for reasons other than vegetation monitoring, users 
must remain mindful of multi-use considerations such as placement, 
viewshed, and camera movement, all of which reduced the number of 
cameras available from the SW network for our analyses. 

For broadleaf deciduous forests, the land surface SOS derived from 
MODIS is likely earlier than actual overstory SOS because the MODIS- 
observed greenness is partially contributed by the understory vegeta
tion (Ahl et al., 2006). In this study, the dominant land cover types in the 
relatively pure MODIS pixels (see Figs. 7 and 8) were evergreen nee
dleleaf forests. Greenness signals from any understory vegetation in such 
locations were mostly obscured by the forest canopy because the nadir- 
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viewing MODIS sees the overstory canopy almost exclusively, meaning 
that the derived MODIS phenology is due almost entirely to the over
story dynamics, in contrast to that observed in deciduous and mixed 
forests. Observing understory phenological patterns from space remains 
challenging due to obstruction by the forest overstory canopy, but the 
magnitude of this challenge changes with forest type, which then con
tributes to challenges in the consistent inference of overstory phenology 
and associated ecological processes from the satellite perspective. This 
has long been known, but it is worth re-emphasizing: our data confirm 
that satellite-based estimations of SOS and EOS at locations that include 
both deciduous and evergreen vegetation are not comparable, and the 
data must be stratified by land cover type in analyses. 

Trailcams may be invaluable in efforts to map understory phenology, 
an important need for a variety of ecological applications (Prevéy et al., 
2020). Other data sources, such as synthetic aperture radar and LiDAR, 
offer opportunities to identify the presence and density of understory 
vegetation, if not also its phenology (Salas, 2020), as a basis for data 
stratification and to help identify the sources of phenological variation 
observed in satellite imagery. Different data types, such as satellite im
ages and camera networks, could be fused within hybrid or integrated 
models that draw from both sources to produce better-informed maps of 
phenology (Pacifici et al., 2017), although accounting for spatial and 
temporal misalignment between data streams could require advanced 
and computationally intensive statistical approaches (Banerjee and 
Gelfand, 2002). Alternatively, gridded understory phenology products 
could be generated from large and dense networks of trail cameras or 
other ancillary data streams alone using geostatistical approaches, or 
such networks could be used to develop correction factors for existing 
MODIS and HLS products (Sirén et al., 2018). The emergence of obser
vation programs like SW and other broad-scale camera deployments 
(Steenweg et al., 2017) makes such approaches increasingly promising. 
As well, additional data can be integrated: Laskin et al. (2016, 2019) 
used MODIS-derived land surface temperature (LST) and LiDAR-derived 
forest structure to model daily air temperature in the understory layer, 
from which they were able to derive realistic patterns of understory 
phenology. However, a large number of temperature observations from 
ground-based thermal sensors was still required to calibrate their model, 
and comparable data at the trailcam-scale were not yet available for our 
study here. Issues of phenological interpretation due to scale differences 
persist and remain the subject of ongoing work. 

6. Conclusion 

In this study we demonstrated the application of a digital trailcam 
network, part of the Snapshot Wisconsin citizen science effort, to char
acterize forest understory and overstory phenology. Retrievals from 
different data sources and curve-fitting methods were compared. Trail
cam photos enabled discrimination of phenological differences between 
understory vegetation and the forest overstory canopy, owing to a sub- 
canopy oblique view that captures multiple elements of forest structure. 
In the broadleaf deciduous and mixed forest locations, understory 
vegetation tended to green up approximately one week earlier than the 
overstory canopy, a difference that may reflect the abundance of un
derstory species adapted to early-season light conditions. Satellite- 
derived phenology from MODIS showed moderate correlations with 
trailcam-based SOS and EOA dates, with the best agreement occurring 
for deciduous overstories. Offsets in timing between trailcam- and 
satellite-based estimates of phenological transition dates are consistent 
with the inherent inability of nadir-viewing satellite observations to 
distinguish between understory and overstory vegetation over large 
areas and especially with mixed pixels. The issue of scale mismatch 
between ground- and satellite-based observations remained prevalent in 
results based on MODIS-derived phenology. However, in the absence of 
extensive ground networks for validation of satellite phenology, data 
from trailcams represent an important corroborating source for in
terpretations from satellite imagery. 

Despite the limitations of ground-based trailcams for characterizing 
phenology at high density over large scales, we think that emerging 
trailcam networks have great potential to inform and enhance pheno
logical studies at local scales. Although trailcams are typically deployed 
for purposes other than phenological observations, programming those 
trailcams to record additional images at consistent times on a daily basis 
can provide invaluable information for phenological analyses at loca
tions of great interest. Compared with other ground-based sensors, such 
as phenocams or flux towers, trailcams are cheaper, easier to install, and 
thus tend to have a higher spatial observation density. Potentially many 
more trailcams can be deployed at advantageous locations in ecosystems 
to address multiple lines of research using fewer resources than phe
nocams require. Trailcams also have the added benefit of providing 
direct information on understory phenology. The multiple uses of 
trailcam data can significantly enhance the ability to diagnose struc
turally variable forest phenology and to interpret satellite-based remote 
sensing observations. 
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