
ent 110 (2007) 79–97
www.elsevier.com/locate/rse
Remote Sensing of Environm
Using remotely-sensed estimates of soil moisture to infer soil texture and
hydraulic properties across a semi-arid watershed

Joseph A. Santanello Jr. a,b,⁎, Christa D. Peters-Lidard b, Matthew E. Garcia b,c,
David M. Mocko b,d, Michael A. Tischler e, M. Susan Moran f, D.P. Thoma f

a Earth System Science Interdisciplinary Center, UMCP, College Park, MD, United States
b NASA-GSFC Hydrological Sciences Branch, Greenbelt, MD, United States

c Goddard Earth Sciences and Technology Center, UMBC, Baltimore, MD, United States
d Science Applications International Corporation, McLean, VA, United States

e U.S. Army Engineer Research and Development Center, TEC, Alexandria, VA, United States
f USDA ARS Southwest Watershed Research Center, Tucson, AZ, United States

Received 10 October 2006; received in revised form 15 January 2007; accepted 3 February 2007
Abstract

Near-surface soil moisture is a critical component of land surface energy and water balance studies encompassing a wide range of disciplines.
However, the processes of infiltration, runoff, and evapotranspiration in the vadose zone of the soil are not easy to quantify or predict because of
the difficulty in accurately representing soil texture and hydraulic properties in land surface models. This study approaches the problem of
parameterizing soil properties from a unique perspective based on components originally developed for operational estimation of soil moisture for
mobility assessments. Estimates of near-surface soil moisture derived from passive (L-band) microwave remote sensing were acquired on six dates
during the Monsoon '90 experiment in southeastern Arizona, and used to calibrate hydraulic properties in an offline land surface model and infer
information on the soil conditions of the region. Specifically, a robust parameter estimation tool (PEST) was used to calibrate the Noah land
surface model and run at very high spatial resolution across the Walnut Gulch Experimental Watershed. Errors in simulated versus observed soil
moisture were minimized by adjusting the soil texture, which in turn controls the hydraulic properties through the use of pedotransfer functions.
By estimating within a continuous range of widely applicable soil properties such as sand, silt, and clay percentages rather than applying rigid soil
texture classes, lookup tables, or large parameter sets as in previous studies, the physical accuracy and consistency of the resulting soils could then
be assessed.

In addition, the sensitivity of this calibration method to the number and timing of microwave retrievals is determined in relation to the temporal
patterns in precipitation and soil drying. The resultant soil properties were applied to an extended time period demonstrating the improvement in
simulated soil moisture over that using default or county-level soil parameters. The methodology is also applied to an independent case at Walnut
Gulch using a new soil moisture product from active (C-band) radar imagery with much lower spatial and temporal resolution. Overall, results
demonstrate the potential to gain physically meaningful soil information using simple parameter estimation with few but appropriately timed
remote sensing retrievals.
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1. Introduction

Soil moisture remains an essential yet elusive component of
Earth system science research across a wide range of scales and
applications. In addition to impacting agriculture, water
resource management, and extreme events such as flooding
and drought, the day-to-day variability in soil moisture on field
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to global scales is an important quantity for atmospheric
modeling and prediction. In fact, the accuracies of climate,
mesoscale, boundary layer, land surface, and hydrologic models
are ultimately dependent on proper treatment and simulation of
the state and transfer of water and heat at the land surface (Betts,
2000; Betts et al., 2003; Berbery et al., 2003; Findell & Eltahir,
2003; Koster, 2004).

Unfortunately, soil moisture is not as easily measured or
observed as atmospheric properties such as temperature,
humidity, and wind speed. For example, in-situ or remotely-
sensed observations of soil moisture for initialization, update,
and validation purposes are not yet available on the scales of
most models. Observations are generally confined to short-term
field experiments, many of which have highlighted the heterog-
eneous nature of soils in terms of water content and texture
(Mohanty et al., 2002). Indirect estimates of soil moisture can
be obtained using thermal infrared measurements (Carlson
et al., 1995), but require a priori information on the surface
characteristics. As an alternative, passive and active microwave
remote sensing methods have had the greatest success in
estimating soil moisture in a temporally and spatially consistent
manner (Hollenbeck et al., 1996; Moran et al., 2004; Thoma
et al., 2006).

Recent studies have noted that the most successful and
promising approach to estimating soil moisture continuously
over time and space must include a combination of remote
sensing and modeling (Entekhabi et al., 1999; Houser et al.,
1998). The majority of land surface models (LSMs) require soil
hydraulic parameters to solve for the transport of moisture
within the soil using Richards' (1931) formulations. These
parameters are often derived from soil texture information, but
due to the heterogeneous nature of soils and lack of detailed
maps of soil properties, soil parameterization schemes are often
crude, inflexible, or inappropriate. Further, LSM simulation of
soil moisture can be more dependent upon the specification of
hydraulic parameters than atmospheric forcing or surface
conditions (Gutmann & Small, 2005; Pitman, 2003; Santanello
& Carlson, 2001).

Because of these difficulties, numerous attempts have been
made to optimize LSM parameters using observations of state
variables such as soil moisture and surface temperature as
constraints (Gupta et al., 1999; Hess, 2001; Hogue et al., 2005;
Liu et al., 2004, 2005). While these studies highlight the
potential for parameter estimation techniques to derive large sets
of ‘effective’ parameters and diagnose specific model weak-
nesses, little has been gained in terms of acquiring physically
meaningful or hydraulically consistent estimates of individual
parameters. Because of the complexity and number of estimation
techniques and parameter sets employed in these studies, it
remains difficult to infer or derive any parameter information
that could be applied to other independent studies or models.

With these issues in mind, this paper examines the potential
use of passive and active microwave retrievals of near-surface
soil moisture to calibrate an LSM and infer a physically
meaningful and consistent set of soil hydraulic parameters,
using a combination of high-resolution land surface modeling
and parameter estimation. The experimental design of this work
was originally developed for the purpose of estimating troop
and vehicle mobility for the United States Army based on
operational soil moisture prediction from a very limited set of
input data (Army Remote Moisture System; ARMS; Tischler
et al., 2007). Here, we have tested and extended ARMS
to assess the ability of parameter estimation techniques to
minimize inherent model error, yet still provide information on
difficult to obtain soil properties over the Walnut Gulch
Experimental Watershed in Arizona.

Accordingly, Section 2 summarizes the current state of
knowledge of the many components of the ARMS project
including soil parameterizations in LSMs, microwave remote
sensing of soil moisture, and parameter estimation. In Section 3,
the models, site, and remote sensing data employed in this study
are described. Results of the calibration experiments are pre-
sented in Section 4, including an evaluation of the optimized
parameters and sensitivity to temporal sampling of remote
sensing. Finally, Section 5 discusses the limitations and appli-
cability of the results, including suggestions for the future utility
of physically meaningful parameters in LSMs.

2. Background

2.1. Soil parameterizations in LSMs

The influence of near-surface soil moisture on the partition-
ing of surface turbulent fluxes from offline LSMs to fully
coupled global climate models has been well-documented (e.g.,
Braun & Schadler, 2005; Cuenca et al., 1996; Ek & Cuenca,
1994; Ek & Holtslag, 2003; Jacobs & Debruin, 1992;
Santanello & Carlson, 2001; Sun & Bosilovich, 1996). In
order to simulate the evolution of moisture in the soil, a set
of soil hydraulic parameters are combined with expressions
(known as soil moisture characteristic curves) relating soil
moisture (θ) with matric potential (ψ), and soil moisture with
hydraulic conductivity (K). The expressions derived by Brooks
and Corey (1964) and Campbell (1974) are most commonly
used in meteorological coupled models, while the van
Genuchten (1980) functions based on a different set of soil
measurements are used for more detailed soil and hydrological
models. A full description and evaluation of these functions can
be found in Braun and Schadler (2005).

The three forms of the characteristic curves above depend on
a set of 4 (Campbell, 1974) or 5 (Brooks & Corey, 1964; van
Genuchten, 1980) hydraulic parameters, which are a function of
the soil composition and structure. These parameters, which are
difficult to measure or estimate in a consistent fashion, include
the saturated matric potential (ψs; aka “bubbling” or “air entry”),
the saturated hydraulic conductivity (Ks), the saturated soil
moisture content (porosity; θs), the residual soil moisture
content (θr), and the pore size distribution index (b).

To acquire a somewhat standard set of parameters for LSM
applications, ‘bulk’ parameters have been derived that are a
function of soil type. The results of Clapp and Hornberger
(hereafter CH; 1978), Rawls et al. (1982), and Cosby et al. (1984)
provide the most extensive and commonly employed lookup
tables of hydraulic parameters for LSMs, with atmospheric-based
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applications favoring CH and Cosby and soil hydrology models
employing the Rawls parameters. Unfortunately, parameter
lookup tables are only as accurate as the available soil texture
type information and provide an “average” value of each param-
eter for each soil type. High-resolution soil texture maps are
difficult to obtain, particularly for regions outside the U. S. and
on global scales, and there is little flexibility between soil types or
for mixed soils despite findings that larger differences in soil
properties have been observed within a soil type than between
types (Feddes et al., 1993; Gutmann & Small, 2005; Soet &
Stricker, 2003).

To bridge the gap between rigid soil textural classes and the
heterogeneous nature of soils, numerous pedotransfer functions
(PTFs) have been developed (Sobieraj et al., 2001). The most
commonly used ‘class’ PTFs relate discrete soil types to hy-
draulic parameters and are the basis upon which lookup tables
are used in LSMs and meteorological modeling applications.
‘Continuous’ PTFs are more detailed and relate measurable soil
properties such as percent of sand and clay, porosity, and bulk
density to hydraulic properties using regression equations
derived from soil samples. These functions are continuous
without bounds, and therefore allow more flexibility and inde-
pendence in parameter values than those from lookup tables.
More importantly, continuous PTFs that are able to reproduce a
real averaged conditions in LSMs have been shown to scale
linearly in space and therefore could be used to infer spatially-
aggregated hydraulic parameters (Soet & Stricker, 2003). While
the advantages of continuous over class PTFs have been dem-
onstrated for hydrologic models, continuous PTFs are not
routinely employed in LSMs or atmospheric models where the
broad definition and application of soil types still dominate the
simulation of soil moisture.

2.2. Parameter estimation

An alternative to specifying soil hydraulic parameters in
LSMs is to use parameter estimation and model calibration
techniques. For example, a relatively simple and well-
established Parameter Estimation model (PEST; Doherty,
2004) has been used in a number of scientific disciplines to
optimize model parameters given limited observations of
fundamental output variables. For example, by adjusting soil
porosity in an LSM until the difference in simulated versus
observed soil moisture is minimized (through a specified
objective function), an LSM can be calibrated using PEST.

Overall, the majority of parameter estimation studies have
focused on large sets of parameters and complex algorithms that
require a great deal of computational time (e.g. Hogue et al.,
2005; Liu et al., 2003, 2004). From these studies, it could also
be argued that the bulk of the work done to this point has been
focused on ‘model calibration’ rather than estimating physically
meaningful soil properties, particularly when there is significant
model error accounted for in the optimized parameters. For
example, Scott et al. (2000) performed soil hydraulic parameter
estimation using a LSM in the Walnut Gulch Experimental
Watershed (WGEW). While their results highlight the relative
sensitivity of soil moisture simulations to individual hydraulic
parameters, they also stress that the derived parameters are
‘effective’ in nature, compensating for errors in the soil physics
of the model, and that further research is needed to assess the
potential for parameter estimation across spatially heteroge-
neous and distributed watersheds.

2.3. Remote sensing of soil moisture

Due to the limited nature of available soil instrumentation
and measurement techniques (e.g., theta probe, Time Domain
Reflectometry, Vitel probe, gravimetric), a spatially continuous
and reliable network of soil moisture measurements that could
be used to initialize and evaluate LSMs does not exist. As a
result, passive microwave (L-band; 1.4 GHz) estimation of soil
moisture has been explored using instruments such as NASA's
push-broom microwave radiometer (PBMR; Schmugge, 1998).
Passive microwave radiometers flown on aircraft have shown a
great deal of promise in estimating soil moisture across varying
surface conditions due to the sensitivity of the dielectric constant
(and therefore brightness temperature) to changes in water con-
tent within the top 5 cm of soil (Burke et al., 1997; Hollenbeck
et al., 1996; Mattikalli et al., 1998; Schmugge, 1983).

More recently, techniques have been developed to estimate
soil moisture using active microwave remote sensing (generally
C-band; 5.3 GHz) with synthetic aperture radar (SAR) pro-
cessing. Active sensors aboard satellite platforms can poten-
tially provide high-resolution estimates of soil moisture when
combined with empirical and physical models (Thoma et al.,
2006). To date, there have been mixed results using radar
remote sensing to estimate soil moisture due to the sensitivity of
high frequency backscatter to the nature and degree of surface
interactions and, consequently, the amount of signal correction
required (see also review by Moran et al., 2004).

Recently, Thoma et al. (2006) have developed an image
differencing technique for active remote sensing that shows
promise in eliminating much of the noise in C-band radar data.
This ‘delta index’ method requires a single reference (dry)
image to compare with separate (wet) images over the same
domain, assuming no other changes in surface characteristics
between image acquisition dates. The delta index is defined as,

delta index ¼ j rwet−rdry
rdry

j ð1Þ

where σdry is the backscatter (db) from a dry radar image, and
σwet is the radar backscatter (db) from the identical pixel
location in a wet image, and has a near linear (1:1) relationship
with volumetric soil moisture. Variability in soil moisture is
captured through the relative change of backscatter between
images, and therefore a unique estimate of soil moisture is
acquired for every pixel on each wet image date. This method
acts to minimize errors due to surface roughness effects using
filtering techniques to reduce the amount of speckle that is
common in radar imagery (particularly in regions of high coarse
fraction), and is particularly applicable to semi-arid regions
where a spatially-uniform dry reference image can be acquired
(Thoma et al., 2006).



82 J.A. Santanello Jr. et al. / Remote Sensing of Environment 110 (2007) 79–97
2.4. Estimation of soil hydraulic properties

There have been numerous efforts to estimate soil hydraulic
properties using a combination of remote sensing imagery,
LSMs, radiative transfer (emission) models, and observations.
The work of van de Griend and O'Neill (1986) and Camillo et
al. (1986) demonstrated that changes in soil moisture estimated
from microwave (L-band) remote sensing could be related to the
thermal inertia and hydrologic properties of the soil. While their
results are valid only for a brief drydown period under highly-
controlled conditions, they suggest that results may be
improved by including a wider range of soil moisture conditions
that capture the functional drying curves represented by the soil
model parameterizations.

Following the work of Camillo et al. (1986), Burke et al.
(1997), Burke et al. (1998) used a coupled land surface-
microwave emission model in conjunction with radiometer
measurements over a 10-day period to infer soil properties for
bare and vegetated soil plots. Using this approach, hydraulic
parameters were adjusted individually to match the emission
model output with L-band radiometer measurements. Overall,
these results point towards the future use of PTFs rather than a
one-at-a-time parameter estimation approach to acquire spatial-
ly-distributed soil properties over watersheds, and suggest that
an intensive period of microwave observations should be
performed to capture significant soil drydown events.

Other ‘combination’ approaches to estimating soil properties
have been tested that incorporate albedo and evaporation data
(Feddes et al., 1993), but require a great deal of measurements
and parameterizations thereby limiting their application to
highly-controlled and plot-scale experiments. Image differenc-
ing techniques using L-band remote sensing to attribute changes
in soil moisture to soil hydraulic properties have also been
developed (Ahuja et al., 1993; Hollenbeck et al., 1996;
Mattikalli et al., 1998). Their results demonstrate the strong
qualitative relationships between microwave measurements and
soil type and properties (e.g., Ksat), and confirm the theoretical
framework by which a more comprehensive approach to
estimating these parameters can be based.

2.5. Summary

Studies have demonstrated that the strong link between
microwave remote sensing and soil moisture can provide a
pathway to improve LSM soil physics and parameterizations.
While these works have provided a strong physical and
methodological foundation by which to address these issues,
each has limitations in terms of scope and applicability that can
now be improved upon by taking the suggested next steps and
utilizing new approaches and data. Specifically, this paper will
bridge the gaps between and extend previous studies by:

1) Determining the ability of parameter estimation to calibrate a
LSM and to infer physically meaningful estimates of soil
hydraulic properties using pedotransfer functions and
microwave remote sensing of soil moisture at high spatial
and temporal resolution;
2) Testing the sensitivity of the calibration process and re-
trieved properties to precipitation and soil drydown patterns
using temporal sampling of airborne remote sensing
imagery; and

3) Applying the retrieved soil parameters to an independent
dataset, and assess the ability of a new image differencing
technique of estimating soil moisture from active satellite
microwave remote sensing to be used in the calibration
process.

3. Methodology and data

3.1. ARMS background

The Army Remote Moisture System (ARMS; Tischler et al.,
2007) project is an ongoing collaboration between the U. S.
Army Corps of Engineers, U. S. Department of Agriculture,
NASA's Goddard Space Flight Center, and the University of
Wyoming. The goal of this work is to provide improved opera-
tional estimates of soil moisture and hydraulic properties as
inputs to decision-making models based on factors such as troop
and vehicle mobility and landing strip suitability. The three
main components of ARMS are 1) high-resolution microwave
remote sensing of soil moisture, used to 2) calibrate a land
surface model by optimizing hydraulic properties through
3) parameter estimation. The ultimate goal of ARMS is to be
able to use limited site information and radar-based soil mois-
ture retrievals to calibrate an LSM for any location in the world
and enable soil moisture and properties to be more accurately
simulated in an analysis and forecast setting. While this study
is focused on a semi-arid testbed in Arizona, ARMS is also
being tested at other diverse locations across the U. S. (OK, GA,
and CO).

3.2. Site information

The USDA Agricultural Research Service, Southwest
Watershed Research Center, Walnut Gulch Experimental
Watershed (WGEW) covers 150-km2 in the San Pedro Valley
of Southeastern Arizona and is dominated by semi-arid desert
shrubs (b30% cover) and grasses (b50% cover). The detailed
instrumentation and long record length of the datasets available
in this region have made the WGEW the focus of many
hydrological, meteorological, and remote sensing studies. Most
notably, the Monsoon '90 field experiment (M90; Kustas et al.,
1991) was conducted in this region in July and August of 1990,
and included the deployment of eight Metflux sites across the
watershed that measured standard meteorological data as well as
land cover, soil moisture, and soil property information. (Fig. 1)

At each Metflux site, standard meteorological variables were
measured at 20-minute intervals. Precipitation measurements
were derived from a dense 98-gauge network covering the
entire watershed, from which spatially interpolated rainfall
estimates (useful for modeling applications) have been generated
using a variety of techniques (Garcia et al., submitted for
publication; Houser et al., 1998). Two supersites were furnished
with additional instrumentation: Lucky Hills (LH) located in the



Fig. 1. The Walnut Gulch Experimental Watershed in southeastern Arizona (outlined in black) covers 148 km2 and is heavily instrumented with meteorological, flux,
and rain gauge data. The M90 experiment included 8 Metflux sites (□) of which Lucky Hills (Site 1) and Kendall (Site 5) were supersites. Overlain are estimates of
volumetric soil moisture (m3 m−3⁎100) derived from push-broom microwave radiometer measurements on DOY 214.
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shrub-dominated north-central part of the domain, and Kendall
located in the grasslands of the east. Soil moisture in the upper
5 cm layer was estimated at each site using multiple gravimetric
measurements, and vertical profiles of soil moisture were
estimated at Kendall and LH using Time Domain Reflectometry,
giving estimates from 5–50 cm in depth.

Overall, the conditions throughout the WGEW are dominat-
ed by the summer monsoon of July and August, when the bulk
of the annual 250–500 mm rainfall (mainly convective) occurs.
During the period from April–July, the soils often reach a
desiccated state before the onset of the monsoonal precipitation.
Rainfall events during the monsoon period are typically b10 mm
and only influence the top 10 cm of soil before being quickly
returned to the atmosphere within 3 days through evapotranspi-
ration (Kurc & Small, 2004), thereby making the near-surface
soil the dominant variable reservoir of moisture in this region.

3.3. Remote sensing of soil moisture

Passive microwave remote sensing measurements (L-band;
21-cm) of brightness temperature were made over a significant
portion of the WGEW during the M90 experiment using
NASA's push-broom microwave radiometer (PBMR), and are
described in detail in Schmugge et al. (1994). From this dataset,
six daily estimates of near-surface soil moisture are available
both before (DOY 212) and after (DOY 214, 216, 217, 220, and
221) the onset of precipitation. The PBMR data was resampled
to 40 m resolution and mapped to a UTM grid that covers
a subset of the WGEW that includes all 8 Metflux sites.
Schmugge et al. (1994) showed that brightness temperature
measurements correlated well with both rainfall and 0–5 cm soil
moisture measured at the sites. Fig. 2 shows the PBMR and
gravimetric estimates of soil moisture at the Kendall and LH
sites along with gauge-interpolated precipitation during the
M90 period. These plots highlight the desiccated soil conditions
before the first and most intense rainfall event on DOY 213, and
more importantly how the PBMR images capture the period of
rapid soil drying thereafter.

For the 2002–4 period active, or radar, microwave remote
sensing (C-band; 5.6 cm) measurements were acquired from
RADARSAT-1 imagery. A reference (dry) image was taken on
19 January 2003 and combined with images during the mon-
soon period (29 July, 22 August, and 15 September 2003) to
derive soil moisture using the delta index approach (Eq. (1)).
The three resulting 0–5 cm soil moisture estimates cover a
6 week period spanning an extended (seasonal) drydown period
immediately following rainfall. The nominal resolution of
RADARSAT-1 is 7 m and covers the entire WGEW domain, but
the raw backscatter data was further processed and filtered as
discussed by Thoma et al. (2006) to 210 and 280 m resolution to
reduce the effects of speckle.

3.4. LSM

The Noah land surface model (Chen et al., 1996; Ek et al.,
2003) was originally developed from the land component of the
Oregon State University 1-D planetary boundary layer model
(OSU; Troen and Mahrt, 1984), and is currently employed as
the land surface scheme in NCEP's operational version of the
Weather Research and Forecasting nonhydrostatic Mesoscale
Model (WRF-NMM). Noah has been used across a wide range
of scales in both offline and coupled modes, and extensive
evaluations and discussion of the Noah physics and compar-
isons to other LSMs has been performed by Robock et al.
(2003), among others.

The offline version (2.6) ofNoahwas configured to run at 40m
resolution over the WGEW. Forcing data was acquired from the
LH site and applied uniformly across the domain including
downward shortwave and longwave radiation, air temperature,
specific humidity, wind speed at a specified reference height
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Fig. 2. Soil moisture in the 0–5 cm layer at the a) Kendall and b) Lucky Hills sites during the Monsoon '90 study period from (▪) PBMR retrievals (Schmugge et al.,
1994) and (▴) gravimetric measurements with standard deviations of the 3 measurements made at each site. Also plotted are the 6-hourly precipitation totals during the
period at each site as derived from the 84-gauge-interpolated dataset over WGEW (Garcia et al., submitted for publication).
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(6 m), and surface pressure. As suggested by Houser et al. (1998),
the impacts of using of a single forcing dataset applied to the entire
watershed are minimal so long as spatially distributed precipita-
tion is accounted for, which is the case here. Indeed, simulations
were performed using theKendall forcing data in place of LH, and
resulted in changes in surface fluxes that were less than the
instrument error. To ensure that the most detailed precipitation
data was included, rainfall from 84 of the 98-gauge network was
broken down and interpolated in time and space at 20-minute and
40-meter resolution. Garcia et al. (submitted for publication)
provide a detailed description and evaluation of two methods of
interpolating rain gauge data over the WGEW, and for the large
number of gauges available here both the inverse distance
weighting (IDW) and multi-quadric biharmonic (MQB) schemes
work equally well for precipitation interpolation.

The hydrology within the Noah model is handled by a
Richards' equation formulation governed by the Campbell
(1974) functions. Traditionally, hydraulic parameters are derived
at each grid cell from lookup tables from Cosby et al. (1984)
based on soil texture maps. Typical sources of soil texture data
for the U. S. include the Food and Agricultural Organization of
the United Nations (FAO; FAO-UNESCO 1981), State Soil
Geographic Database (STATSGO; USDA 1994), and Soil
Survey Geographic Database (SSURGO; USDA, 2006). Soil
type data from SSURGO is the highest-resolution (county-level)
available continuously over the WGEW, and is used here in our
default Noah simulations.

In a similar manner, vegetation parameters for each grid
cell are derived from land cover maps (using lookup tables).
Peters-Lidard et al. (submitted for publication) performed a
thorough evaluation of the impacts of varying inputs of land
cover, soil type, and precipitation on soil moisture simulations.
In this study, we use the best available land cover data (UMD;
Hansen et al., 2000), climatologically-derived values of albedo
and vegetation fraction, and MQB precipitation forcing as input
to the Noah model.
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A standard 4-layer soil profile was used in Noah with a top
layer of 5 cm that matched the representative depth of in-situ
and remote sensing soil moisture measurements. The sensitivity
of Noah to varying numbers (up to 20) and depths of soil layers
was examined in detail, and results showed that adding addi-
tional layers did not significantly alter or improve results for this
semi-arid region. Also, after careful calibration with observed
soil moisture values in the WGEW and the results of previous
studies (Scott et al., 2000), the prescribed minimum value of
soil moisture in Noah was lowered from 0.05 to 0.02 m3 m−3.

In an effort to ensure consistency and add flexibility within
soil types and hydraulic parameters, continuous PTFs were
incorporated into Noah to replace lookup tables for this study.
Specifically, the PTFs derived by Cosby et al. (1984) require
only percentages of sand and clay to derive the hydraulic
parameters as follows,

hs ¼ 0:489−0:00126⁎SAND ð2Þ

ws ¼
10:0exp½1:88−0:0131⁎SAND�

100:0
ð3Þ

Ks ¼ 0:0070556⁎10:0exp½−0:884þ 0:0153⁎SAND�
1000:0

ð4Þ

b ¼ 2:91þ 0:159⁎CLAY ð5Þ
where θs (m

3 m−3), ψs (m), Ks (m s−1), and b are functions of
SAND and CLAY percentage (%), and independent of soil
texture classes or averaging. Though based on the identical soil
samples and data of the default Noah lookup tables, these PTFs
ensure that a full range of soil parameter values based on soil
composition is derived in a realistic and consistent manner.

3.5. Parameter estimation

The Parameter Estimation model (PEST; Doherty, 2004) is a
widely-used tool for examining sensitivities and estimating
parameters in models spanning a wide range of applications. In
particular, the ability of PEST as a model-independent estimation
technique to link with any type of LSM using flexible parameter,
observation, and convergence criteria make it optimal for use in
this study. Here, PESTwas configured to run as a parent model to
Noah (PEST-Noah), where it evaluates and minimizes an objec-
tive function based on the differences between simulated and
observed soil moisture as follows:

RMSE ¼ 1
Nobs

XNobs

i¼1

ðhi;Noah−hi;PBMRÞ2
" #0:5

ð6Þ

where Nobs is the number of PBMR observations used in the
calibration and θi,Noah and θi,PBMR are Noah simulated and
PBMR observed 0–5 cm soil moisture at each observation time.
Until the convergence criteria are met, PEST iterates and adjusts
the PTF parameters (sand, silt, and clay percentages), evaluates if
this decreases the model error, and adjusts the parameters
accordingly. Extensive testing of PEST-Noah has shown that
there can be on the order of 2–20 iterations requiring up to 200
model runs in total before PEST converges in some cases, de-
pending on how far the initial parameters are from their optimal
values.

To ensure the accuracy and repeatability of PEST-Noah
simulations, identical twin experiments were conducted. PEST-
Noah was run at the Kendall and LH sites using Noah soil
moisture output from control simulations of widely varying soil
types as observations (in place of PBMR). In each case PEST-
Noah returned the precise sand, silt, and clay values prescribed
in the control case and gives confidence to running PEST-Noah
for a variety of conditions over WGEW and that the results are
unique.

4. Results

4.1. M90 calibration experiments

Simulations were performed during the M90 period from 23
July–9 August 1990 that encompasses the 6 PBMR overpasses.
This period allows ample time for the model to equilibrate to the
very dry initial conditions leading up to the first PBMR image
(31 July), and before the onset of the monsoon and the first
significant precipitation event of the season (2 August). The
model was run using a 20-minute timestep, and output was
generated every 6 h.

4.1.1. Metflux sites
PEST-Noah was run at each of the 8 Metflux sites using the

closest 40 m PBMR pixel to each site on the 6 observation
dates. Fig. 3 shows the simulated soil moisture at the Kendall
and LH sites before (SSURGO soils) and after (PEST)
calibration of sand, silt, and clay along with corresponding
PBMR and in-situ gravimetric measurements. Despite the dif-
ferences in magnitude and drydown patterns exhibited between
the sites, PEST is able to fit the simulated soil moisture to the
observations. Also evident is the significant improvement in
simulations using calibrated soil properties compared with those
from default lookup table (SSURGO) approach.

The RMSE and bias in simulated versus observed (PBMR)
soil moisture for all 8 Metflux sites are shown in Fig. 4. The
ARMS requirement of 5% (volumetric) accuracy in soil
moisture prediction is easily satisfied at all the Metflux sites
when using the PEST-Noah calibration, with overall RMSE and
bias values less than 2%. In particular, the bias in the default
Noah simulation using SSURGO soils has been greatly reduced
using PEST to near zero for most locations. Examination of
each individual site's improvement in simulated soil mois-
ture (similar to that shown in Fig. 3) makes it clear that PEST-
Noah primarily acts to reduce the bias by adjusting the overall
magnitude and dynamic range (using soil texture) to match
observations.

Given the accuracy of the calibrated soil moisture at each
site, it is useful to assess the potential utility and accuracy of
optimized soil textures as well. Fig. 5 shows a comparison of the
optimized sand, silt, and clay percentages at each site versus
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Fig. 3. Simulated 0–5 cm soil moisture from default and PEST-calibrated Noah simulations for the a) Kendall and b) Lucky Hills sites during the M90 period.
Measurements of soil moisture from PBMR and gravimetric sensors on the 6 optimization dates are also shown.

86 J.A. Santanello Jr. et al. / Remote Sensing of Environment 110 (2007) 79–97
those measured during the M90 experiment by Schmugge et al.
(1994). The optimized soil textures suggest a primarily sandy
soil, and are similar to the observed soils with greater than 65%
sand and less than 10% clay content. Optimized values of silt
content are lower than those observed, but this is likely due to
the setup of PEST-Noah where silt is actually a dummy variable
and, more importantly, that the PTFs are only a function of sand
and clay content.

It is also important to consider the range and magnitude of
hydraulic properties resulting from the different soil textures.
Table 1a presents the optimized values of sand, silt, and clay for
the Metflux sites and corresponding hydraulic properties
derived from the PTFs in Noah. For comparison, Table 1b
lists observed soil textures from Schmugge et al. (1994) and
hydraulic properties at each site estimated using the Noah PTFs.
Overall, there is relatively little variation in properties estimated
from PEST-Noah across the sites despite variation in sand
content (73–100%). Similarly, hydraulic properties derived
from observed textures exhibit a small range, although their
magnitude differs slightly from the PEST-Noah values due to
the lower sand percentage (66–80%).

To get a better feel for the physical applicability of the
parameters themselves, Table 2 presents hydraulic parameters
derived from FAO, STATSGO, and SSURGO soil lookup
tables, a neural network-based PTF (ROSETTA; Schaap et al.,
1998), PEST-Noah using PTFs, and measurements made during
2002 (Schaap & Shouse, 2004) and the 2004 North American
Monsoon Experiment (NAME; Higgins et al., 2006). The FAO
soil type for all 8 Metflux sites is sandy loam, STATSGO is
loamy sand, and the finer resolution SSURGO data indicates 3
different soil types across the Metflux sites. As a result, there is
significant disagreement in hydraulic properties among these
lookup tables alone.

The PEST-Noah parameters fall within the range of
established datasets and measurements, yet there remain signif-
icant differences between lookup table and calibrated hydraulic



Fig. 4. Bias and RMSE in simulated versus observed (PBMR) 0–5 cm soil moisture during the M90 period using default (SSURGO; gray) and optimized (PEST;
black) soil properties at each Metflux site.
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properties as a result of using continuous PTFs in PEST-Noah.
The ROSETTA PTF model suggests parameters that are
inconsistent for a sandy soil and with observations, and indicate
this particular PTF may not be appropriate for this region. Based
on the improvements in simulated soil moisture exhibited by
PEST-Noah presented earlier, the PEST-Noah soil textures and
PTFs appear to be the most accurate.

From a broader perspective, it is important to assess whether
PEST-derived soil parameters can be employed in Noah and
represent conditions at WGEW over longer timescales. There-
fore, the soil textures optimized from the M90 period were used
to run the Noah model at Kendall and LH over the 2002–4
evaluation period. Fig. 6 shows the soil moisture simulated by
Noah over a 54-day period (following an 18 month spinup) in the
summer of 2003 compared with in-situ observations from Vitel
Fig. 5. Percentages of sand, silt, and clay estimated by PEST-Noah at the eight Me
probes surrounding LH and Kendall. Simulations with optimized
parameters (RMSE=2.8/2.9, Bias=−0.01/−0.02% volumetric
for LH and Kendall, respectively) perform well and are com-
parable to those using SSURGO soils (RMSE=4.2/3.6, Bias=
2.4/.01%) over the extended period. Once again, this highlights
the ability of PEST to adjust the dynamic range of soil moisture
simulated by Noah and effectively respond to precipitation
events, and supports the use of optimized soil properties across
this watershed for seasonal (and longer) durations that are equal
or better than high-resolution soil maps.

4.1.2. Watershed average
As detailed point or regional surface characteristics are not

always available, it is useful to examine the calibration tech-
nique at lower spatial resolution. Fig. 7 shows simulated soil
tflux sites compared with in-situ measurements from Schmugge et al. (1994).



Table 1
Optimized sand, silt, and clay percentages estimated from a) PEST-Noah simulations at the eight Metflux sites compared with b) those observed by Schmugge et al.
(1994) and associated hydraulic properties computed for each using the PTFs employed in the Noah LSM (Cosby et al., 1984)

a)

PEST Site % SAND % SILT % CLAY Ksat (m s−1) Ksat (cm d−1) ‘b’ θs (m
3 m−3) ψsat (m)

1 (LH) 95.3 0.0 4.7 2.65 E-05 228.6 3.66 0.369 0.043
2 88.5 0.0 11.5 2.08 E-05 179.9 4.74 0.377 0.053
3 90.9 0.0 9.1 2.27 E-05 195.8 4.36 0.374 0.049
4 85.5 0.0 14.5 1.87 E-05 161.9 5.22 0.381 0.057
5 (Kendall) 88.3 0.0 11.7 2.07 E-05 178.7 4.77 0.378 0.053
6 89.1 0.0 10.9 2.13 E-05 183.8 4.64 0.377 0.052
7 98.3 0.0 1.7 2.94 E-05 254.1 3.18 0.365 0.039
8 100.0 0.0 0.0 3.12 E-05 269.8 2.91 0.363 0.037

b)

Observed Site % SAND % SILT % CLAY Ksat (m s−1) Ksat (cm d−1) ‘b’ θs (m
3 m−3) ψsat (m)

1 66 24 10 9.42 E-06 81.4 4.5 0.406 0.104
2 69 20 11 1.05 E-05 90.7 4.7 0.402 0.095
3 71 20 9 1.12 E-05 96.8 4.3 0.399 0.089
4 73 22 5 1.21 E-05 104.5 3.7 0.397 0.084
5 69 20 11 1.05 E-05 90.7 4.7 0.402 0.095
6 67 25 8 9.76 E-06 84.3 4.2 0.405 0.101
7 80 14 6 1.54 E-05 133.1 3.9 0.388 0.068
8 72 20 8 1.16 E-05 100.2 4.2 0.398 0.086
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moisture across the entire PBMR domain on DOY 214 from
default (SSURGO) Noah and PEST-Noah simulations com-
pared with the PBMR data. In this case, PEST-Noah is
minimizing the mean error in simulated versus observed soil
moisture across this watershed. DOY 214 was chosen because it
is just after the onset of precipitation when the hydraulic
Table 2
Soil hydraulic parameters used in the Noah model at the a) Kendall and b) Lucky
SSURGO classifications and those computed from PEST-Noah estimates of sand, s

a)

Kendall FAO STATSGO SSURGO

Soil type Sandy loam Loamy sand Clay loam

Ksat (m s−1) 5.2 E-05 1.41 E-05 2.5 E-05
Ksat (cm d−1) 44.3 121.8 21.6
‘b’ 4.74 4.26 8.17
θs (m

3 m−3) 0.43 0.42 0.47
ψsat (m) 0.14 0.04 0.26
θref (m

3 m−3) 0.28 0.26 0.29
θwilt (m

3 m−3) 0.047 0.029 0.103

b)

Lucky Hills FAO STATSGO SSURGO

Soil type Sandy loam Loamy sand Sa. clay loam

Ksat (m s−1) 5.2 E-05 1.41 E-05 4.5 E-05
Ksat (cm d−1) 44.3 121.8 38.9
‘b’ 4.74 4.26 6.77
θs (m

3 m−3) 0.43 0.42 0.40
ψsat (m) 0.14 0.04 0.14
θref (m

3 m−3) 0.28 0.26 0.26
θwilt (m

3 m−3) 0.047 0.029 0.069

For comparison, soil properties estimated by Scott et al. (2000) from a neural netw
estimates of hydraulic parameters based on soil samples taken during 2002 (Schaap
parameters have the largest impact on soil moisture. While there
is only one set of optimized soil texture and hydraulic param-
eters estimated for the entire domain (92% sand, 8% clay), the
significant improvement (RMSE and bias) in PEST-Noah soil
moisture over that simulated using SSURGO data indicates that
the calibration process can still be successful and potentially
Hills sites derived from default lookup tables based on FAO, STATSGO, and
ilt, and clay percentages at each site using the PTFs in Noah

ROSETTA PEST NAME 2002

Sandy loam Loamy sand Sandy loam Sa. clay loam

2.9 E-05 2.07 E-05 1.4–4.2 E-05 1.04 E-05
24.9 178.66 120.9–362.9 898.6
– 4.77 – 1.96
0.25 0.378 0.33 0.47
– .053 – 0.21
– 0.22 – –
0.031 .020 – –

ROSETTA PEST NAME 2002

Sandy loam Sand Sand Sa. clay loam

2.5 E-05 2.65 E-05 1.4–4.2 E-05 1.65 E-05
21.2 228.63 120.9–362.9 1425.6
– 3.66 – 1.62
0.24 0.369 0.25 0.45
– .043 – 0.16
– 0.18 – –
0.028 .020 – –

ork PTF (ROSETTA; Schaap et al., 1998) are shown along with site-specific
& Shouse, 2004) and during the NAME (Higgins et al., 2006) in 2004.



Fig. 6. Near-surface soil moisture simulated by Noah using PEST-derived soil properties and default soil parameters (SSURGO) compared against Vitel probe
observations at the a) Kendall and b) Lucky Hills sites during summer 2003.
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useful for deriving meaningful soils data on watershed scales
with coarser inputs.

4.2. Temporal sampling of PBMR images

The high temporal resolution of the PBMR imagery captures
a complete soil drying cycle for this region. To assess the
broader applicability of the methodology described above, it is
useful to look at precisely how many and which PBMR images
are needed for accurate calibration. The sensitivity of PEST-
Noah to the number of PBMR observations was tested by
looking at all possible combinations of image in the calibration
process. Fig. 8a shows the error in simulated versus observed
soil moisture at Kendall for each of the image combinations
used in PEST-Noah. Kendall was chosen as a representative site
because it exhibits the largest range of soil moisture throughout
the period and also was more difficult to calibrate due to two
significant precipitation events and a strong drydown period in
between.
Fig. 8a shows that there is a significant reduction in RMSE
(and standard deviation) once three or more images are used in
the calibration. There are fewer number of data points for single
images because many of those simulations were unable to
converge with only one observation. What is also evident is a
large amount of scatter or variability when using one or two
images, while for simulations employing three or more obser-
vations all the points collapse indicating that it does not matter
which images are included. Note that the error using Noah with
SSURGO soils (Fig. 4) is still 2–3 times larger than even the
worst PEST-Noah simulations using a single PBMR image.

The other main factor in the success of PEST-Noah is what
portion of the soil drying curve (i.e. dynamic range) is captured
by the PBMR images. Fig. 8b shows the error in simulated soil
moisture against the range in soil moisture captured by the
image combinations described above. The results look similar
to Fig. 8a, and suggest that errors are significantly reduced if the
images used capture at least 5% (volumetric) variability in soil
moisture during a drydown period. When the full dynamic



Fig. 7. RMSE and bias in simulated versus observed 0–5 cm soil moisture using a) default (SSURGO) soils and b) soil properties optimized using PEST-Noah on
DOY 221. A single set of parameters was optimized for the entire PBMR domain.
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Fig. 8. Errors in simulated versus observed 0–5 cm soil moisture at the Kendall site for varying a) numbers of PBMR images used in PEST-Noah and b) ranges of soil
moisture covered by these images. The lightly shaded points indicate simulations that were calibrated using only the first two and three PBMR images.
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range in soil moisture is captured by the PBMR images, the
RMSE and bias (not shown) in PEST-Noah simulations are
minimized, and are ∼5 times lower than using SSURGO soils.

Analyses also indicate that the second PBMR image
(DOY 214) is the most critical observation to include in the
calibration. This image was acquired immediately following a
rainfall event (Fig. 2a) and represents the maximum value of
soil moisture observed during the period. Out of the 7 simu-
lations when PEST-Noah was unable to converge on a solution
(i.e. not enough information was coming from the observa-
tions), all occurred when day 214 was not included. More
importantly, out of the simulations using 5 out of 6 images, the
only one unable to converge was with day 214 omitted. Error
analyses (not shown) also support the importance of including
day 214, and the improvement in calibrations when this ‘wet’
image is included.

An independent test of the sensitivity of PEST-Noah to the
choice of PBMR images was also conducted, using only the
first 2 and 3 PBMR images to calibrate the model and evalu-
ating Noah with the optimized soils over the remainder of the
period. The errors in simulated soil moisture using this approach
are also plotted in Fig. 8, and similar to those timescales, PEST-
Noah could be used with a few images early in the period to
calibrate and estimate soil properties, which could then be used
to improve simulations on a forecast basis without requiring
additional images.

4.3. 2003 Calibration experiments

The development of the delta index allows us to test the
PEST-Noah approach using satellite-based active radar imagery.
RADARSAT-1 images were acquired over the WGEW during
July, August, and September 2003 that cover a larger temporal
and spatial extent than the PBMR images during the M90 period
(Fig. 9). As described earlier, the Delta Index data had to be
aggregated from 40 to 210 and 280 m resolution to reduce the



Fig. 9. Soil moisture (m3 m−3) estimated from RADARSAT-1 active microwave measurements over the WGEW on a) 29 July, b) 22 August, and c) 15 September
2003. Backscatter was aggregated from 7 to 280 m to reduce the effects of speckle and converted to soil moisture using the delta index image differencing technique
(Thoma et al., 2006).
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impact of speckle (amplified by the high rock content of the
soils in this region) on the soil moisture retrievals. Although
PEST-Noah was run with precipitation and land cover data at
40 m resolution, experiments were conducted to confirm the
appropriateness of applying 210 and 280 m resolution data from
active radar to that of a 40 m pixel.

To cover the extended period between radar overpasses,
PEST-Noah was run from 30 June–15 September 2003 using
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the interpolated precipitation and Kendall forcing data as for the
2003 evaluations described previously. Fig. 10a shows the
PEST-Noah simulations, delta index estimates, and in-situ
observations of soil moisture at the Kendall site. Once again,
PEST-Noah does a good job of calibrating the parameters in
Noah to produce soil moistures that match those estimated by
the delta index. For the Kendall site, PEST-Noah converged on
a solution of 100% sandy soil for both the 210 and 280 m
images (compared with 88% sand; 12% clay in M90). Although
this calibration suggests a slightly sandier soil than M90, the
differences in soil moisture and hydraulic properties are
negligible, as discussed in Section 4a. The higher sand content
is likely the result of the slightly lower mean range of soil
moisture estimated by the delta index (0.153 max, 0.032 min) as
compared to the PBMR (0.169 max, 0.075 min), which requires
a soil type that drains more readily.

The PEST-Noah results for LH (Fig. 10b) suggest consider-
able differences in calibrations using the delta index compared
with observations and PBMR calibrations. The optimized values
for sand, clay, and silt were 28, 72, and 0% using 210 m data, and
Fig. 10. Near-surface soil moisture simulated by PEST-Noah using 210 and 280 m Del
2003. Also shown are observations of soil moisture from Vitel probes surrounding
20, 45, and 35% using 280 m data (compared with 95% sand; 5%
clay in M90). Closer inspection of the in-situ observations of soil
moisture over the period shows a comparable dynamic range to
that observed at Kendall. However, the first delta index image
(at both 210 and 280 m) gives a rather wet soil moisture estimate
compared to observations, while the latter 2 images are relatively
dry. In order to match the high moisture content of the first image,
PEST-Noah is forced to simulate a high clay content which has a
higher holding capacity and strength.

The first radar overpass is nearly 3 days after the last
significant rainfall at LH, which means the soil has had
significant time to dry out particularly for this region. In fact,
studies have shown that the typical response time from rainfall
to complete drydown is within 2–3 days (or less, depending on
ground cover) in WGEW due to the shallow moisture reservoir
and high bare soil evaporation rates (Kurc & Small, 2004;
Shamir et al., 2005). That previous studies, M90 observations
(PBMR and in-situ), and in-situ observations all depict a much
more rapidly drying soil at the site suggests that the delta index
data may be overestimating soil moisture on this date.
ta Index as observations at the a) Kendall and b) Lucky Hills sites during summer
each location.
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5. Discussion

While PEST-Noah suggests a slightly more sandy soil over
the region than observed during M90, the differences in the
parameters that control the soil moisture dynamics are not as
significant as the soil textures might indicate. Plausible values
are estimated by PEST-Noah for each parameter when com-
pared with established datasets and measurements (Tables 1
and 2). This is due to the slowly varying relationships between
soil texture and hydraulic properties for high sand contents
governed by the PTFs.

Further, it has been noted in numerous studies of the WGEW
that there is an unusually high rock fragment content of the
upper soil layers (and is not typically accounted for in cate-
gorical lookup tables or PTFs). The unique and sandy soil type
estimated by PEST-Noah at the Metflux sites is slightly less
porous and more conductive than those observed, which may be
an attempt to indirectly account for the high rock content in
Noah by adjusting the parameters to match that of a rocky, yet
sandy, soil (i.e. less pore space but increasing flow paths in the
soil volume). A simple formulation to account for rock content
in calculating hydraulic parameters is currently being imple-
mented in the Noah model to test the sensitivity of the
calibrations.

There remain significant differences between lookup table
and calibrated hydraulic properties. This is due to the ability of
the continuous PTFs implemented PEST-Noah to produce in a
unique (but realistic) soil type that rigid lookup tables cannot
describe. It is also important to note that the large spread of
hydraulic properties across data sources in Table 2 is a function
of differences in the way each property is estimated and what
each represents. For example, Ksat values of 250 cm d−1 can be
estimated from soil samples under laboratory conditions, even
though actual precipitation rates could never be high enough to
observe similar saturation values in the field. Further, while the
ROSETTA model suggests values for Ksat that are an order of
magnitude lower than those calculated in the laboratory (and
may be closer to a true saturated value observed in nature), such
values result in inaccurate simulations of soil moisture when
employed in Noah. Overall, it is the combination of an accurate
soil hydraulic property representation with the physics of the
LSM that determines the most appropriate parameters.

Because PEST-Noah suggests a unique soil type that also
corresponds well with observations, the limitations of the Noah
soil physics do not appear to be significant enough to deter
estimates of physically meaningful soil properties. On the con-
trary, attempts at calibrating more sophisticated vadose zone
models have typically yielded parameter values that lie well
outside measured values, and as such could only be interpreted as
‘effective values’ that absorb significantly more model or forcing
data deficiencies than they do represent real soil properties. For
example, Scott et al. (2000) found values of 2.5×10−6 and
3.7×10−7 m s−1 for Ksat and 0.25 and 0.23 m3 m−3 for porosity
at Kendall and LH, using a model calibration approach. Using the
PTFs, these Ksat values correspond to a soil texture of 39% sand,
and the porosity values are so low that a soil type cannot be
derived. In contrast, the methodology presented in this paper
allows for calibrated parameters to be constrained by physical
plausibility and the PTF approach, which, while subject to error,
at least forces physical consistency.

With regards to the delta index experiments, which represent
the first attempt to calibrate soil properties using satellite-based
soil moisture estimates, high frequency (active) microwave
retrievals are difficult to obtain in regions with high rock
content due to increased backscatter and a weaker relationship
with soil moisture (Jackson, 1992). Clearly, if there were more
images available during 6-week period, particularly during and
immediately following rainfall events, PEST-Noah would be
able to perform better as for the M90 case. Houser et al. (1998)
made similar recommendations for data assimilation in this
region, suggesting that soil moisture observations are required
at least once during every storm event. For the 2003 experi-
ments, it is likely a combination of insufficient temporal sam-
pling and the limited spatial resolution of active remote sensing
(through the signal-to-noise ratio) in the soil moisture retrieval
process that resulted in poor calibration at LH.

Along these lines, the resolution of the precipitation data is a
critical factor for the calibration process. While the results here
present a ‘best-case’ scenario in terms of the spatial and
temporal resolution of (84-gauge) rainfall data, it is important to
consider the applicability of these results to semi-operational
applications in regions of limited precipitation observations. To
address this, a companion study has been conducted (Peters-
Lidard et al., submitted for publication) which demonstrates the
sensitivity of the calibration and soil property retrieval process
to a range of precipitation resolutions for the identical watershed
and time period presented in this paper.

6. Conclusions

This paper has examined a straightforward method of using
microwave remote sensing of near-surface soil moisture to
calibrate an offline land surface model, and in the process infer
soil texture and hydraulic properties at high spatial resolutions.
This approach expands and improves upon a wide body of
previous work by incorporating pedotransfer functions into the
LSM to ensure consistent and physically meaningful soil
parameters, and by addressing the temporal sampling of remote
sensing imagery needed for successful calibration. As a testbed
for the ARMS project, this research was able to retrieve soil
texture and property estimates that correspond well with ob-
served soils over the WGEW. Once estimated for this region,
these parameters were also used to simulate soil moisture over
seasonal time scales with a great deal of accuracy compared to
simulations with default soils and soil properties based on
lookup tables.

Specific results of this study include the following:

1) Limited microwave retrievals of near-surface soil moisture
can be used to calibrate an LSM to within .02 m3 m−3

accuracy at high temporal and spatial resolutions.
2) Optimizing soil hydraulic properties using PTFs gives better

and more physically meaningful results than a one-at-a-time
parameter estimation approach.
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3) Errors in the calibration process are minimized when there
are at least 3 images included that represent the typical range
of moisture exhibited by the soil type during a drydown
period.

4) Independent tests indicate that this methodology can be
successful in calibrating LSMs over seasonal and longer
timescales for use in specialized prediction systems.

Overall, these results suggest that ARMS could be applied at
sparsely-vegetated locations to simulate soil moisture in a semi-
operational context with limited remote sensing inputs.
Simulations that expand the 8 Metflux sites tested here to the
full WGEWat 40 m resolution of PEST-Noah are ongoing, from
which fully distributed maps of soil texture and hydraulic
properties will be produced. Alternatively, one could use the
PEST-Noah approach after stratifying the watershed using high-
resolution soils, land cover, or similar data to further examine
the spatial distribution of soil properties. Distributed soil
property information can then be compared with existing soils
maps and the approach repeated and applied to other LSMs and
regions. Future work on the ARMS project will include testing
the methodology and evaluating the delta index at cold land,
high relief, and strongly coupled (land–atmosphere) regions of
the U. S., where the calibration process should yield new insight
on the images and accuracy required and the limitations of LSM
physics for diverse surface conditions.

The ability of satellite-based active remote sensing and the
delta index technique to retrieve soil moisture on scales smaller
than watershed needs to be investigated further before incor-
poration in an ARMS type of approach. While results here
have shown that 3 images are sufficient to calibrate and obtain
soils information, the soil moisture estimates must be accurate
(within ∼3–5%) and capture a typical dynamic range of soil
moisture for the region in question. Currently, vegetation cover
is another limiting factor for both L-band and C-band retrievals
of near-surface soil moisture, and as a consequence, the ARMS
approach.

The spatial resolution of currently orbiting active remote
sensing, determined in part by the signal-to-noise ratio of the
measurement, may be a limiting issue for this application. As
such, the accuracy of soil moisture retrieval from active remote
sensing through approaches like the delta index or other re-
trieval methods (e.g. Alvarez-Mozos et al., 2005) needs further
investigation before it can be incorporated with confidence.
With this in mind, the ARMS methodology should be con-
sidered using platforms other than those considered here. For
example, current microwave sensors aboard satellites provide
limited soil moisture information at regional scales (generally
6–20 GHz, 38–70 km horizontal resolution), and the future Soil
Moisture and Ocean Salinity (SMOS; Pellarin et al., 2003)
mission will be the first to provide L-band retrievals on a global
scale (1.4 GHz, 50 km).
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